Hello all! I'm new to this, getting deeper into UF and enjoying it immensely!

I've been scouring around trying to find a particular orbit trap, wondering if anyone here recognizes it. Looks a bit to me like foam bubbles...
66294dd5cc2b4.jpg
66294dd5f2a1e.jpg

Any help or direction would be appreciated!

Hello all! I'm new to this, getting deeper into UF and enjoying it immensely! I've been scouring around trying to find a particular orbit trap, wondering if anyone here recognizes it. Looks a bit to me like foam bubbles... ![66294dd5cc2b4.jpg](serve/attachment&path=66294dd5cc2b4.jpg) ![66294dd5f2a1e.jpg](serve/attachment&path=66294dd5f2a1e.jpg) Any help or direction would be appreciated!
edited Apr 24 at 7:27 pm
 
0
reply

Looks to me like a formula from Newton with a mandelbrot inside, not like a coloring algo.
Best search in the formula collection in ufm for a Newton variant. I have seen shapes like this.

Looks to me like a formula from Newton with a mandelbrot inside, not like a coloring algo. Best search in the formula collection in ufm for a Newton variant. I have seen shapes like this.
 
0
reply

Ah, ok. I follow you, and visually that makes sense. I will search formulas. Thank you!

Ah, ok. I follow you, and visually that makes sense. I will search formulas. Thank you!
 
0
reply

Update; searched ufm formulas for several hours, haven't been able to locate any formula that looks like this. Also tried to locate contact info for the two pics I posted, but no luck there either.

If anyone else recognizes or finds this pattern, please post.

Thanks!

Update; searched ufm formulas for several hours, haven't been able to locate any formula that looks like this. Also tried to locate contact info for the two pics I posted, but no luck there either. If anyone else recognizes or finds this pattern, please post. Thanks!
 
0
reply

I found a few old parameters with similar shapes. There's Frame Robert Roots-Mandel:

663a507e6aa94.png

frameRobertRoots-mandel02 {
; © 2000 Morgen Bell
::Wupixhn2tTZTvtNOQY47Gw/HI0pdPYb+l+qFEYxmu9UbP0etAGMSU2cjEpKJVSd/13hUyOOo
7C0imjB+gJfFnZe5wHyOnsJI7f16VIUQH6VisOncQhc2bVuA8nN43MINtqeEmmheQ3GOKYUM
6oSf4YQQ5YUv8ky5FsYWcKvtfKotGRJF14Ut6gXk9er7gyg+bVf/rJ4dsdUMGnteVK0U5bkj
poyeXUCRyQ2RZjOcSQwY0gCifw2qE27VOIKQJc02KGm6D6Rp3ve1gccUbOMnNlJocCy2CCnh
LJEeZNmnXQy3h3iBTT50ycWRZBFXhrLjxMIPYE0K82yaSZNruuomRYIp5A0XK3WhL4YONGJO
vsikveVn1B1X+q5o/qOVScNGNqcNHVN3JsddoOdvyANVRmTd72puhs46BD6OJyebsd/xU3+j
pm97TN7M04eYj6jdEyWIh7vVq7tTBB5f2UEjfcv2oDCwt7wrXpNedra+c0JN+OwJGrRteFEz
P+pmJogQ5uybDhtTNQdX81QYjXbUZzlqxadtibkugyrlGQBS14+0ByN9WvyHSrq36EvR7DST
jCE83pHF45U41fTBulADBshE3SHlgQecnuIc/sQ3+ODR0Y9pR04ojxkEnxESwXrXdwJb1gXT
7L/AsXOKOp8AxGkJOaDhg0Qr8rCMa2YESeNjSyXkZVJQ5ynwsc6ynqJL6FMSVRV1iMldWnUS
4gO0dnZ0rdhxepunJYae+/Jq/B1DoZcn+IuXwui2ltw9HYtvg7/O4u/LurR9+7GeCrfQO59Z
pSECnGjO3OZa/jv9nXwf4Q/WYlxtcCvQf+vQDaTMID0VSFHG3JbE0dRGHKdrdIy8G7cSmVOf
NYXcT2bP4Vq201iuUi6mMNCw/mwPBiTYlLoW8p2EYiXEIlVXh2cOPB7LYc15bEF1FMa+zIG/
Dva/C0+cBttD/7TgWY+mPlOquxauP+gxCsOafI1V5EOlwyLo7ei1oVPOjGda8B4WdKDR86Mx
buoE56pWYM5/nJnRF+53Hr450KSxZYkTvojzhfnfBmX+4TwcOFOKJ/Ss43hKhfbr
}

Cayley Mandel:

663a50d559e91.png

greenPorousBits {
; ©2001 Morgen Bell
::BuVmKhn2tbZzOutNQA47GwvDC6agt5QJKLlCeIZbu1fOs7dDaJKb2IRqQStbce67QKpNeRy2
m0Gg2DLghxohc4Ma43Maatiavo71rXlk4V+OJP9kVK1JDGrZ0lcU5dpJPoa8n5UGJ5sUd6sn
nTIJdiLSrjnHM1KdmuRvyo57pJ1WZDaHP9XN2T4Z9WZX3Px2R3vjSIQ66VRTj+sWMEtK93kP
k8LB1JZpJmBRtyfhDob6l4Z0bakcz9SLaJqxf20w7H78qBhzteVvYYQpPNdiStXa5bIbJ094
PWeJjlXVwgCoYHZbVeFlUQqAKQKLKLJsgV9iTaOjmD5lw2SILPHKqgqsEh+EmUo7htMKpEYA
upCaJd/6VtGLGDiXPZ/HVB3ywIuV1J1ieMValH3O22nmgxk9CP9GxlO5lN9CdTaywB89xFe5
htkwZMc4oQ1ZG9c4dbKwHrN67Dv9cM54N6gmRn30jGgBtS7UNypbOrQ7aR3rNa56V4R8lL5+
g1fVo18Hvf7Yd3jh2tKtcDmmTj+1Yb43IsepTJ0TxmKELe0DocvwfG4vaWi+oUWUaw8g0CcY
RkyhpjI+UWcBMsQTC3q30ZcSnP62Ojl/zKnXorloC37VDcSQQ9JJnsd+YQ+DCaPLQdsQecWx
9TKaP0qBOmA0+oMdSOYc7hP1Oqr5OlOuUWQa9qTWRjC3SMj56NGk2vIdJWjXExzNQZiS3I/I
GOThJwyyyzqqmVnXFZvplgKIDhs5lQiZehsiycEqwLoJ++a3h51FHsQ/UG7vpUh+clKu6YR8
LVK/AqUci+nUpc3Zl+3tYjx7QG2FiuYK/2x+pQzdWMI5vxWfHmRCM4wBRk5PG/vmT2FgVkt+
MbHWwK8LFKtxMEZH8OaYLtT1StIdTXKjQZCcVN13AEThFikQ/6UMkDfGjryLrIlLcfYTT6zL
AWR5POIGeWIe8oP85Jc/Rw5FY+/KYO92BlV0Fuq+/CMvpk8ldkrqqyYzqLvujcBetj8wjdkr
esVNe9uPrYeBKi7ztq3zIUC8vlyfGC/FQ+7Hk7wBUE2rCue/TI5e/G8b5ynd+l/ZTcsMux8k
H/lTcsMUBlXbczjXIQxvlWz5LoZxXHZpXTzPF0BI7pQ7SH7SYWP57Cj/TIwT/CA=
}

and Rational Newton Mandelbrot:

663a5110386b8.png

windows2 {
::RnPEHin2t35STuNuRc87uK/dgluEvlj0QgmUUaTxD2bymTuyWxJXjLMSQScH+ykUe8sf6TDw
XgkgST2Z2srtb7LSNIe3N+jh/EIPUI2VJi/+X+CHnqoqYZ4i7jS3ndfJfhz9R7rOFy9ddOJj
OeqK0z11JW8gsoMk55UILziPXFllGGwVFwuC5+oqywFvLr4oM15ty44/y6b8vh766t4lvQnV
dVtTkrz3iyTi9RpHdwaLLXsLq6hwgAnEJm/ks9ywsPJLwshWqOltPM5ccVUuosU3eLEpl5iC
ZaV4DS0UiIPHLs6aAtKLCXydXFAuerBP2NcYlHb7WGzfrTi4Yao7K/tgP+vNOi0jYnHTa1GG
s+lv4QWBWZCdZlI+ckqwYY3PXWs7kc3dhZHO4cIKWmKSwBt47SgVnPksQd9YVX8Q4iChqPKi
XmKvvKLdZiIdvM+2isqFO5f4X2FyuBLvPcrIKO7clq0dXpMkE6pKl8PkGyUpHus+CPV9QuMM
/1fUlb9nVtKRlE/uM52syyw0M8zlR/i8gAL+6SJWN1V39cf5LiSLj2L/+uxvDY/KNLV+yXgt
hpJV+xiKHcaOaforR3dfyPjd3dxLa7rKDL/HF3GV9vKE5lLqra5nxhrK9EZ9HRbVq0xZ1S18
PoGR1m09nDRFlV1ZVZbXWcWR4+oSs5vTaa8wbTKlVhLUGceziRZBTVXnp4coIWlyJ0X9UWM2
JW56rGiU9o6iX750mdRcc9YK24Q/Y8rO9ffRbrvSUUFWPXp+ejvxK3+yp8uoctpum1Z0Jl18
N296wpDnT3F+m+MxNM/2GbghtfoxmK6Adz5hLSiSf1b+zv97MGAaTUcbj3ghRgF+mRW4hveS
eBor6bt4F+6RW8D/h+MywwYc6rQur2Rr1s84xSJGhqH/CZdDHqEiSloDLGBaUMiyqiso95Z3
jjourWP4fBdjeiPJTiKKyKKbcd7KgjFR71T97jEHVxetJcoQ+xzy0dPwMbGikcc++8ep2qR5
kfSUiG7nA7LAu1CgH6OtA4mFQuEXntM0r3SlamVPK4NIvnko/FuKRonf/FrNqisNr+aj3JvH
DkGUEiyccuw8SxBEcNUZhqTxCGbdczPKFjQrwYWc4NdQ5UnCu4nK+z9m+xHBOqPsQUmsfh6p
Ix+9t2aWs2dF/GzCo2cCqBY4Lz2XEdYQJWPUZkP0QZlM3c0XPIN67tXjZOl5SRVpSJK9o51X
nQb78mp5pZBWjcgCb4EeTR5Z2tySVFUR0ObVkOb2rIdS6xu7Exyo9Zl7yyl9zl1rT2t2dMGi
JKMKg2rIHXNcnIWO0/oJtsyquENyrKQ7Y7FZMbgr1iaC3GrsZO3/2kzlSRpKHZ4qlDyQjR1a
qVPg5sujNM3mXDqwfE3IiRrdwF0N0PXJ0PaOu5h+ga9vh5UbdyIUXCVijo0bSCuZHU8N+hhZ
ue4HVeaXOE3FRhR69REDznt672IR5gFhwmQXk9o28Y/vWbK1JLe6t1YTS+jzm2OEMo8yw+jK
WEGWO1LXzHcplxon5kBWtVDFBsJ56yGfB1dFw1SelxyPVnVYStZxrlXrLlnFl2u1D+caS8ON
pBrGzfUaS851k4zpJxtqJxnTTiPRTibVTiboJZpAM1k4T0k4zoJxtpJxtpJxnTTiPRTibqJN
x4IJJ+sSS8Zkk4Tlk4Wlk4Wkk4FScBCcxwItbipjMfyyJcrCV8OhKj8qGCN6sTVq4tKVmexG
iV9tP7KV85Vq42Vq4DVqGW1XSriPvWF/yaV8rqVxvgWF/KaV8Z0q421q4zqVxfEaVDvmPJKi
0V6Wzw05UzmrUmMDNjaml+Qrgmh9hqZDzjdBNjLwqa2wywS80U1Muha2omwklFsomxvsaGfG
1M+cqZc7qZcLqZcrqZ8rpmxnXNjfB1M+FUzgpqZwcqZgd1M4RpmBzrmBzpmBWVzg5UzgJqZg
V1MYO1MYiaGMRNDmRNDspmB2Uzg5UzgJutgN1MYG1MYW1MYG1MYqaGYVNDsomBzrmBTUzArq
ZgF1MYoaGMVNDmqmBWUzg5Uzg5VzA7qZwFUzgLpmBzrmBXWNDuqaGcB1M4KqZwMqZgd1MYW1
M4RomBXVNDeEqZwFVzgrqmBzomBXQNDumaGcd1MwmaGYRNDsqmB2UzALqZwlVzgZUzg5UzA7
qZgF1MwqaGcN1MYe1M4CqZgF1sjKfOcSXffmLTyyQvnHklO4iHN5GciS3L/corT9dodrLDW7
xasy4wQ7qypJJ/gmkCAXwl3WQcv1tZhHseDDHjagNY2IQ3s26tFFB33/iULYE1CiahdqFqZK
9+WIsFE2CCbBhtgwWQYLIsFE2CCbBhtgwWQYLIsFE2CCbBhtgwWQYLIsFE2CCbxXJYL88bgN
wWHEEwZ+N23sVfH+1Jt2PYr6uIXnCwazC3Dw/zeq8JOUgLf7gN5o0eCFr3SEK+9mQxeJeZ4c
BDCcGts7l4VY05Hjs4Ryro3xvHZxAeFoLPRqgIVQkKISFEpivAJVo2LyTGVB65eBUFw1IVsk
jdJX/NAfz6bWi7KgF4z3y9t0sHtFZ2F2iM7abRmd9tIbQwYJbzq1bdBXgBYjcNqXx24ibOaC
TjhZXvxZmVkG24ZYBzh52mnjnhlsdRkG24ZYBAxwRa77Z2S2an3vEPDboSGfX0eM8MMkpNvJ
QPOeGma8jEvmlnh5d26Rg0YKPDbFwFQaMlnhJkjLj0wKPjxcOuMSjp8MGcbrvGSj55ZMB2x8
INszzYEojrh0YKPjJQOmFpxIeGDJcMHSDb8MmgngQaQINIkGESDCpBh0gQaQINIkGESjv0Ra
wYtMN2spBQxGvNb3EwbPYFub6ZaEwCAu3mWmGeQnd3NcO/5hpxhbT6Jao4GMGgBRv4bjzXxl
5VMPsimyh4VQ8KIeFEvCiXBdyK+j9JrgOXF05qgOXF05qgOXFEECCCBBhggQQQIIIEEECCCB
Bh4bCIEb32+4dyr9x706tb44/bpQ4bcyKAwPQ/jZ7pRbYXc259ljRN0e6JK3VIlpWO8EErhn
dWDNnOi+OapIZAkh3/jv9dHlpqe0hR/GIPo6Zhs/GbjqvoarRpH0dJ9XKPrun843wVXCXsa1
q8oPLjd+kI+ss5OoXL/W3r0T9L+JZB2k+T6b+PuenS1QnquqZhra6zaX86c8q3hz0rePGl+d
/nIV20z8Mdgs+ywl/wZiI9AXa4/UcfdRoQjcu4WjivZhE9uSU7OLXU1r5O430WpUuPEWvJwT
VL4YZ9u0W8eMscXlcvzPeOdny5YRdHLcx/uU6o468qoa6BH+wBW4usyTPiY0eggbbCDbPaT+
8RHGq+nWbrd7YKi2d96e+u1+waz9pGEX/msBDeKv7/VohO6cRAE/tNo+rqXsMMg4IScE/mmj
oLhRkwISYEpHQbEIRCkIBSkAJSgEJQiEIRCkIBSkAJSgEJQiEIRCk4vbgEB3OEDTpS80INcb
WVVWizJR8B64JR0FUuWR4kVUqo4hnJ8C8ACvAhX4bE8CfJBX4rV0CuEaBCtAhWgQLQoFI0CE
aBCtAhWgQLQoFI0CEaBCtAhWgQLQoF6RL0eWkUfq9UNw4ebbROwBjnUaMGzdbgX3r/lu8wAf
PewmNPVcEqzugTVWOdqHIuEEXCiLBxl45hLB/LqD9AuQ3KGxmgYTQsJI2EEbCiNBxmgYTQsJ
I2EEbCiNBxmgYTQsJI2EEbiv6ZT8UpJUllTnsBigARQgIIQEEoT2ARPgoHQ0DI6BE9AieARP
goHQ0DI6BE9AieARPgoHQ0DI6BE9gvmoH09qdYT7LfFmnrr3ae3blFgZcyGaeeK1m2Wf7H5B
eXCb9WDrBvnlT8Q9ThJ6QPQILIkFEyCCZx3eH6hlqT9wS6YPQgLIwFE4CCcBBugAXQgLIwFE
4CCcBBugAXQgLIwFE4CCcBdsHuOShjpiCcePTdDpvybCe9t4/rwXG8/xAlweJeZ4IvyHu7y2
d+WZBOla0pTq04EM6yJVLrnFXqvf66XR81Dkh/dl9GHs63s7vD1ojSbexxXk0a8YqejDoR9t
6Xtc/ft/FH9gA9a/zu7GtIE0RM32E5cSFNoCDPEL+UWh+GrizlfoZyUPYDrYeo/QdBk8BDOC
1XQbVwUvf2TZh4YEuNO1n5df+Yq6F3e6PX/Wc/ImSc2R9nA1L09HRwzS2G/xvl2ZeucvAXoF
t3G/esfec+ae/zzM8iemeDujrwfnTesoMRMXEYdAX99PjiB/NHnX5HLsEzZEwpmyW2MlVXfd
xN/k2KapVLZ/gwnWxng6slr47hiUqtOULfZKgOMwTDXE7rGBFPK3cv2nbfetvRg6eHBBrH6c
rKkW41ejiJequ55PUdSc0hfZVGy9+/7u3Yncg/d9EVWBuDGUSBX2R24jj/x06WYR25U1fvUR
dbvIb/5dVtxA3ilAuZ4qT4EZ0Oc6Uk2k9uNY9o8a3yaXcezYvW3ttet++ue9+sMIw+64QXOQ
hHwHCW/M5Mzu8vDDy39LPf3ko0okzJOt/Zk/aceb/5ExZjc762Xx6+NP0vi7GT36WX3Or/qW
H+/CsLrYfA==
}

...plus the respective Julia versions of each. I'm sure there are others, too. Good luck!

I found a few old parameters with similar shapes. There's Frame Robert Roots-Mandel: ![663a507e6aa94.png](serve/attachment&path=663a507e6aa94.png) frameRobertRoots-mandel02 { ; © 2000 Morgen Bell ::Wupixhn2tTZTvtNOQY47Gw/HI0pdPYb+l+qFEYxmu9UbP0etAGMSU2cjEpKJVSd/13hUyOOo 7C0imjB+gJfFnZe5wHyOnsJI7f16VIUQH6VisOncQhc2bVuA8nN43MINtqeEmmheQ3GOKYUM 6oSf4YQQ5YUv8ky5FsYWcKvtfKotGRJF14Ut6gXk9er7gyg+bVf/rJ4dsdUMGnteVK0U5bkj poyeXUCRyQ2RZjOcSQwY0gCifw2qE27VOIKQJc02KGm6D6Rp3ve1gccUbOMnNlJocCy2CCnh LJEeZNmnXQy3h3iBTT50ycWRZBFXhrLjxMIPYE0K82yaSZNruuomRYIp5A0XK3WhL4YONGJO vsikveVn1B1X+q5o/qOVScNGNqcNHVN3JsddoOdvyANVRmTd72puhs46BD6OJyebsd/xU3+j pm97TN7M04eYj6jdEyWIh7vVq7tTBB5f2UEjfcv2oDCwt7wrXpNedra+c0JN+OwJGrRteFEz P+pmJogQ5uybDhtTNQdX81QYjXbUZzlqxadtibkugyrlGQBS14+0ByN9WvyHSrq36EvR7DST jCE83pHF45U41fTBulADBshE3SHlgQecnuIc/sQ3+ODR0Y9pR04ojxkEnxESwXrXdwJb1gXT 7L/AsXOKOp8AxGkJOaDhg0Qr8rCMa2YESeNjSyXkZVJQ5ynwsc6ynqJL6FMSVRV1iMldWnUS 4gO0dnZ0rdhxepunJYae+/Jq/B1DoZcn+IuXwui2ltw9HYtvg7/O4u/LurR9+7GeCrfQO59Z pSECnGjO3OZa/jv9nXwf4Q/WYlxtcCvQf+vQDaTMID0VSFHG3JbE0dRGHKdrdIy8G7cSmVOf NYXcT2bP4Vq201iuUi6mMNCw/mwPBiTYlLoW8p2EYiXEIlVXh2cOPB7LYc15bEF1FMa+zIG/ Dva/C0+cBttD/7TgWY+mPlOquxauP+gxCsOafI1V5EOlwyLo7ei1oVPOjGda8B4WdKDR86Mx buoE56pWYM5/nJnRF+53Hr450KSxZYkTvojzhfnfBmX+4TwcOFOKJ/Ss43hKhfbr } Cayley Mandel: ![663a50d559e91.png](serve/attachment&path=663a50d559e91.png) greenPorousBits { ; ©2001 Morgen Bell ::BuVmKhn2tbZzOutNQA47GwvDC6agt5QJKLlCeIZbu1fOs7dDaJKb2IRqQStbce67QKpNeRy2 m0Gg2DLghxohc4Ma43Maatiavo71rXlk4V+OJP9kVK1JDGrZ0lcU5dpJPoa8n5UGJ5sUd6sn nTIJdiLSrjnHM1KdmuRvyo57pJ1WZDaHP9XN2T4Z9WZX3Px2R3vjSIQ66VRTj+sWMEtK93kP k8LB1JZpJmBRtyfhDob6l4Z0bakcz9SLaJqxf20w7H78qBhzteVvYYQpPNdiStXa5bIbJ094 PWeJjlXVwgCoYHZbVeFlUQqAKQKLKLJsgV9iTaOjmD5lw2SILPHKqgqsEh+EmUo7htMKpEYA upCaJd/6VtGLGDiXPZ/HVB3ywIuV1J1ieMValH3O22nmgxk9CP9GxlO5lN9CdTaywB89xFe5 htkwZMc4oQ1ZG9c4dbKwHrN67Dv9cM54N6gmRn30jGgBtS7UNypbOrQ7aR3rNa56V4R8lL5+ g1fVo18Hvf7Yd3jh2tKtcDmmTj+1Yb43IsepTJ0TxmKELe0DocvwfG4vaWi+oUWUaw8g0CcY RkyhpjI+UWcBMsQTC3q30ZcSnP62Ojl/zKnXorloC37VDcSQQ9JJnsd+YQ+DCaPLQdsQecWx 9TKaP0qBOmA0+oMdSOYc7hP1Oqr5OlOuUWQa9qTWRjC3SMj56NGk2vIdJWjXExzNQZiS3I/I GOThJwyyyzqqmVnXFZvplgKIDhs5lQiZehsiycEqwLoJ++a3h51FHsQ/UG7vpUh+clKu6YR8 LVK/AqUci+nUpc3Zl+3tYjx7QG2FiuYK/2x+pQzdWMI5vxWfHmRCM4wBRk5PG/vmT2FgVkt+ MbHWwK8LFKtxMEZH8OaYLtT1StIdTXKjQZCcVN13AEThFikQ/6UMkDfGjryLrIlLcfYTT6zL AWR5POIGeWIe8oP85Jc/Rw5FY+/KYO92BlV0Fuq+/CMvpk8ldkrqqyYzqLvujcBetj8wjdkr esVNe9uPrYeBKi7ztq3zIUC8vlyfGC/FQ+7Hk7wBUE2rCue/TI5e/G8b5ynd+l/ZTcsMux8k H/lTcsMUBlXbczjXIQxvlWz5LoZxXHZpXTzPF0BI7pQ7SH7SYWP57Cj/TIwT/CA= } and Rational Newton Mandelbrot: ![663a5110386b8.png](serve/attachment&path=663a5110386b8.png) windows2 { ::RnPEHin2t35STuNuRc87uK/dgluEvlj0QgmUUaTxD2bymTuyWxJXjLMSQScH+ykUe8sf6TDw XgkgST2Z2srtb7LSNIe3N+jh/EIPUI2VJi/+X+CHnqoqYZ4i7jS3ndfJfhz9R7rOFy9ddOJj OeqK0z11JW8gsoMk55UILziPXFllGGwVFwuC5+oqywFvLr4oM15ty44/y6b8vh766t4lvQnV dVtTkrz3iyTi9RpHdwaLLXsLq6hwgAnEJm/ks9ywsPJLwshWqOltPM5ccVUuosU3eLEpl5iC ZaV4DS0UiIPHLs6aAtKLCXydXFAuerBP2NcYlHb7WGzfrTi4Yao7K/tgP+vNOi0jYnHTa1GG s+lv4QWBWZCdZlI+ckqwYY3PXWs7kc3dhZHO4cIKWmKSwBt47SgVnPksQd9YVX8Q4iChqPKi XmKvvKLdZiIdvM+2isqFO5f4X2FyuBLvPcrIKO7clq0dXpMkE6pKl8PkGyUpHus+CPV9QuMM /1fUlb9nVtKRlE/uM52syyw0M8zlR/i8gAL+6SJWN1V39cf5LiSLj2L/+uxvDY/KNLV+yXgt hpJV+xiKHcaOaforR3dfyPjd3dxLa7rKDL/HF3GV9vKE5lLqra5nxhrK9EZ9HRbVq0xZ1S18 PoGR1m09nDRFlV1ZVZbXWcWR4+oSs5vTaa8wbTKlVhLUGceziRZBTVXnp4coIWlyJ0X9UWM2 JW56rGiU9o6iX750mdRcc9YK24Q/Y8rO9ffRbrvSUUFWPXp+ejvxK3+yp8uoctpum1Z0Jl18 N296wpDnT3F+m+MxNM/2GbghtfoxmK6Adz5hLSiSf1b+zv97MGAaTUcbj3ghRgF+mRW4hveS eBor6bt4F+6RW8D/h+MywwYc6rQur2Rr1s84xSJGhqH/CZdDHqEiSloDLGBaUMiyqiso95Z3 jjourWP4fBdjeiPJTiKKyKKbcd7KgjFR71T97jEHVxetJcoQ+xzy0dPwMbGikcc++8ep2qR5 kfSUiG7nA7LAu1CgH6OtA4mFQuEXntM0r3SlamVPK4NIvnko/FuKRonf/FrNqisNr+aj3JvH DkGUEiyccuw8SxBEcNUZhqTxCGbdczPKFjQrwYWc4NdQ5UnCu4nK+z9m+xHBOqPsQUmsfh6p Ix+9t2aWs2dF/GzCo2cCqBY4Lz2XEdYQJWPUZkP0QZlM3c0XPIN67tXjZOl5SRVpSJK9o51X nQb78mp5pZBWjcgCb4EeTR5Z2tySVFUR0ObVkOb2rIdS6xu7Exyo9Zl7yyl9zl1rT2t2dMGi JKMKg2rIHXNcnIWO0/oJtsyquENyrKQ7Y7FZMbgr1iaC3GrsZO3/2kzlSRpKHZ4qlDyQjR1a qVPg5sujNM3mXDqwfE3IiRrdwF0N0PXJ0PaOu5h+ga9vh5UbdyIUXCVijo0bSCuZHU8N+hhZ ue4HVeaXOE3FRhR69REDznt672IR5gFhwmQXk9o28Y/vWbK1JLe6t1YTS+jzm2OEMo8yw+jK WEGWO1LXzHcplxon5kBWtVDFBsJ56yGfB1dFw1SelxyPVnVYStZxrlXrLlnFl2u1D+caS8ON pBrGzfUaS851k4zpJxtqJxnTTiPRTibVTiboJZpAM1k4T0k4zoJxtpJxtpJxnTTiPRTibqJN x4IJJ+sSS8Zkk4Tlk4Wlk4Wkk4FScBCcxwItbipjMfyyJcrCV8OhKj8qGCN6sTVq4tKVmexG iV9tP7KV85Vq42Vq4DVqGW1XSriPvWF/yaV8rqVxvgWF/KaV8Z0q421q4zqVxfEaVDvmPJKi 0V6Wzw05UzmrUmMDNjaml+Qrgmh9hqZDzjdBNjLwqa2wywS80U1Muha2omwklFsomxvsaGfG 1M+cqZc7qZcLqZcrqZ8rpmxnXNjfB1M+FUzgpqZwcqZgd1M4RpmBzrmBzpmBWVzg5UzgJqZg V1MYO1MYiaGMRNDmRNDspmB2Uzg5UzgJutgN1MYG1MYW1MYG1MYqaGYVNDsomBzrmBTUzArq ZgF1MYoaGMVNDmqmBWUzg5Uzg5VzA7qZwFUzgLpmBzrmBXWNDuqaGcB1M4KqZwMqZgd1MYW1 M4RomBXVNDeEqZwFVzgrqmBzomBXQNDumaGcd1MwmaGYRNDsqmB2UzALqZwlVzgZUzg5UzA7 qZgF1MwqaGcN1MYe1M4CqZgF1sjKfOcSXffmLTyyQvnHklO4iHN5GciS3L/corT9dodrLDW7 xasy4wQ7qypJJ/gmkCAXwl3WQcv1tZhHseDDHjagNY2IQ3s26tFFB33/iULYE1CiahdqFqZK 9+WIsFE2CCbBhtgwWQYLIsFE2CCbBhtgwWQYLIsFE2CCbBhtgwWQYLIsFE2CCbxXJYL88bgN wWHEEwZ+N23sVfH+1Jt2PYr6uIXnCwazC3Dw/zeq8JOUgLf7gN5o0eCFr3SEK+9mQxeJeZ4c BDCcGts7l4VY05Hjs4Ryro3xvHZxAeFoLPRqgIVQkKISFEpivAJVo2LyTGVB65eBUFw1IVsk jdJX/NAfz6bWi7KgF4z3y9t0sHtFZ2F2iM7abRmd9tIbQwYJbzq1bdBXgBYjcNqXx24ibOaC TjhZXvxZmVkG24ZYBzh52mnjnhlsdRkG24ZYBAxwRa77Z2S2an3vEPDboSGfX0eM8MMkpNvJ QPOeGma8jEvmlnh5d26Rg0YKPDbFwFQaMlnhJkjLj0wKPjxcOuMSjp8MGcbrvGSj55ZMB2x8 INszzYEojrh0YKPjJQOmFpxIeGDJcMHSDb8MmgngQaQINIkGESDCpBh0gQaQINIkGESjv0Ra wYtMN2spBQxGvNb3EwbPYFub6ZaEwCAu3mWmGeQnd3NcO/5hpxhbT6Jao4GMGgBRv4bjzXxl 5VMPsimyh4VQ8KIeFEvCiXBdyK+j9JrgOXF05qgOXF05qgOXFEECCCBBhggQQQIIIEEECCCB Bh4bCIEb32+4dyr9x706tb44/bpQ4bcyKAwPQ/jZ7pRbYXc259ljRN0e6JK3VIlpWO8EErhn dWDNnOi+OapIZAkh3/jv9dHlpqe0hR/GIPo6Zhs/GbjqvoarRpH0dJ9XKPrun843wVXCXsa1 q8oPLjd+kI+ss5OoXL/W3r0T9L+JZB2k+T6b+PuenS1QnquqZhra6zaX86c8q3hz0rePGl+d /nIV20z8Mdgs+ywl/wZiI9AXa4/UcfdRoQjcu4WjivZhE9uSU7OLXU1r5O430WpUuPEWvJwT VL4YZ9u0W8eMscXlcvzPeOdny5YRdHLcx/uU6o468qoa6BH+wBW4usyTPiY0eggbbCDbPaT+ 8RHGq+nWbrd7YKi2d96e+u1+waz9pGEX/msBDeKv7/VohO6cRAE/tNo+rqXsMMg4IScE/mmj oLhRkwISYEpHQbEIRCkIBSkAJSgEJQiEIRCkIBSkAJSgEJQiEIRCk4vbgEB3OEDTpS80INcb WVVWizJR8B64JR0FUuWR4kVUqo4hnJ8C8ACvAhX4bE8CfJBX4rV0CuEaBCtAhWgQLQoFI0CE aBCtAhWgQLQoFI0CEaBCtAhWgQLQoF6RL0eWkUfq9UNw4ebbROwBjnUaMGzdbgX3r/lu8wAf PewmNPVcEqzugTVWOdqHIuEEXCiLBxl45hLB/LqD9AuQ3KGxmgYTQsJI2EEbCiNBxmgYTQsJ I2EEbCiNBxmgYTQsJI2EEbiv6ZT8UpJUllTnsBigARQgIIQEEoT2ARPgoHQ0DI6BE9AieARP goHQ0DI6BE9AieARPgoHQ0DI6BE9gvmoH09qdYT7LfFmnrr3ae3blFgZcyGaeeK1m2Wf7H5B eXCb9WDrBvnlT8Q9ThJ6QPQILIkFEyCCZx3eH6hlqT9wS6YPQgLIwFE4CCcBBugAXQgLIwFE 4CCcBBugAXQgLIwFE4CCcBdsHuOShjpiCcePTdDpvybCe9t4/rwXG8/xAlweJeZ4IvyHu7y2 d+WZBOla0pTq04EM6yJVLrnFXqvf66XR81Dkh/dl9GHs63s7vD1ojSbexxXk0a8YqejDoR9t 6Xtc/ft/FH9gA9a/zu7GtIE0RM32E5cSFNoCDPEL+UWh+GrizlfoZyUPYDrYeo/QdBk8BDOC 1XQbVwUvf2TZh4YEuNO1n5df+Yq6F3e6PX/Wc/ImSc2R9nA1L09HRwzS2G/xvl2ZeucvAXoF t3G/esfec+ae/zzM8iemeDujrwfnTesoMRMXEYdAX99PjiB/NHnX5HLsEzZEwpmyW2MlVXfd xN/k2KapVLZ/gwnWxng6slr47hiUqtOULfZKgOMwTDXE7rGBFPK3cv2nbfetvRg6eHBBrH6c rKkW41ejiJequ55PUdSc0hfZVGy9+/7u3Yncg/d9EVWBuDGUSBX2R24jj/x06WYR25U1fvUR dbvIb/5dVtxA3ilAuZ4qT4EZ0Oc6Uk2k9uNY9o8a3yaXcezYvW3ttet++ue9+sMIw+64QXOQ hHwHCW/M5Mzu8vDDy39LPf3ko0okzJOt/Zk/aceb/5ExZjc762Xx6+NP0vi7GT36WX3Or/qW H+/CsLrYfA== } ...plus the respective Julia versions of each. I'm sure there are others, too. Good luck!
 
0
reply

Cayley mandel
Cubic roots mandel
Inkenaga roots mandel
Newton Mandel degree 4 and 3 and k

And other Newton variants with c pixel in the formula.

But i not remember in witch ufm.

Cayley mandel Cubic roots mandel Inkenaga roots mandel Newton Mandel degree 4 and 3 and k And other Newton variants with c pixel in the formula. But i not remember in witch ufm.
 
0
reply

Bingo!!! Cayley Mandel is the formula I was looking for! Thank you so much, @mrvelocipede and @Tester37 !

Bingo!!! Cayley Mandel is the formula I was looking for! Thank you so much, @mrvelocipede and @Tester37 !
edited May 8 at 12:20 am
 
0
reply

For the rookies like me out there, these matching formulas are the main formula of the fractal. I was making the mistake of trying to apply an Outside formula onto a Mandelbrot set since I had already found such a precise match at the top level of Mandelbrot to the piece I was looking at.

663bed7511319.jpg

663beab23fb46.jpg

Thanks again for the guidance!

For the rookies like me out there, these matching formulas are the main formula of the fractal. I was making the mistake of trying to apply an Outside formula onto a Mandelbrot set since I had already found such a precise match at the top level of Mandelbrot to the piece I was looking at. ![663bed7511319.jpg](serve/attachment&path=663bed7511319.jpg) ![663beab23fb46.jpg](serve/attachment&path=663beab23fb46.jpg) Thanks again for the guidance!
edited May 8 at 10:24 pm
 
0
reply

It could also be a normal Newton set for a polynomial where some points never converge to a solution. The zones that don't converge have the shape of a MB set.663cb460cbb2d.png

//edit: Acutally, this is the result you get when you fix 3 coefficients in place and vary the 4th one over the complex plane, so it's a bit more involved than just a normal Newton. There's a fantastic video by 3Blue1Brows on this on holomorphic dynamics.

It could also be a normal Newton set for a polynomial where some points never converge to a solution. The zones that don't converge have the shape of a MB set.![663cb460cbb2d.png](serve/attachment&path=663cb460cbb2d.png) //edit: Acutally, this is the result you get when you fix 3 coefficients in place and vary the 4th one over the complex plane, so it's a bit more involved than just a normal Newton. There's a fantastic video by 3Blue1Brows on this on holomorphic dynamics.
edited May 9 at 7:03 pm
 
0
reply
289
views
8
replies
4
followers
live preview
Enter at least 10 characters.
WARNING: You mentioned %MENTIONS%, but they cannot see this message and will not be notified
Saving...
Saved
All posts under this topic will be deleted ?
Pending draft ... Click to resume editing
Discard draft