The previous "Sixteen Ways" kept the formula fixed and changed the coloring on the Outside tab. This version is the opposite, using the new "tweaking" capabilities in the newly uploaded jlb.ulb.
The coloring uses the Arithmetic Average of the distance of z from the origin, starting with iteration 8 and continuing for 100 iterations, or until bail out. All 16 mini-fractals use the same coloring with a simple gold-brown gradient.
The main formula is a simple Julia (0.3,0.0) as in the previous "Sixteen Ways" with a variety of tweaks applied after each iteration of the main formula. There are many more possibilities for you to try.
16Ways#4 {
::0zP+cgn2t35XvttuZY87LQ/OIodzGGssItdizZQX00uUcKOtroxdDYYAG0S02qVWSHJ54m8p
fkUy/VS2i2Nn4TyzF7sGL+SKSKK+yfPUvccCzNjF8Lv+VGGZ+ZBcHTyFG/H29pG/lumGL89y
m60322YK3fy0MnLE/zA298kUHylSjcT4e+ZpOmfwfmx1Bz5/jOtJ9bTtpUTDWYmPLwnl6HOx
5ee6rflyWVp5yiz8jCdM/UkR2CO77mGRxMX/s7dIiCZGPbaknzs5BZ+xs0UjsEWYaMLhHmln
VzYxxi8NPzE/KPxxutwQ2kQHrOX2TU6TE1nrszNdcUyMxN9rf1q/SZ5Y/AeIbmoefbGL0jl4
ZN/HjNNEZYy9OmvnHyT8dHs0GTpNxDXlHvNQcv5Y+tgRWzDG9Lf43ue4Hjuj/W19TlJ26uhT
yzUV9siLv6HkJomsYeKPZr0VORTjS8fwx2iQ7VdmIyhlXW+rzDYqWkZsf4LbM7aLzVei7Uu7
3diGPej2KV9dcerRRL1tL8zcn+2oZjiuJP3MFl5dDL/7rrWFFbFNibYlZ50WqNcnLOefFk46
p+ziD4pqywhWOHiHGHtQ0EQbXj9KLdl3dVb+MxjS3n/YqR5rmmxkN9trwwUO3zpFxi2ryie8
wbLaEJb3e9pospiBDLvq5+td72vDm2l/bZd9gJu4O5hb3bvtVIxhUu67Pi5H4EGVZzm/oB3H
Le47/a45Le4dCP1siEVcNZxWZBnnkMZONLyrir6GFWkD/zWXs3qLdnB+iOdewokosm1NQ1ob
gqT3gMxlvZEmROgZxD/oqhpyOgtTo6BVbrOtttOcaz8qZswmpT8kSb7DmX7bg5mpcUjyN2wo
AP5IxDdv55NQ0qEyPQ6G7HyC+6At6YXbTFv4vBWNPzPQMr5xY839D9cejnXDTu6ZjfzPkzSU
TdeYLuxx3TM/QDz/5D2eAVeR9VxUdFz/+/kZkYS4mlZHVvw8jtjQZYppl1x4SVXRWQFOSRoN
PXYN4h5NSeTGlsM5ciG5NnKdtoxJn50y2yu6sPeYTev/yX73tmX6v335vzr89DTFP2m7Tsqn
Q8GH5gfj0oAfPnu0+96eR3eXKSa08sypNIaSRStr0/S3gNdcqwFz3nw88F/0bjCEOuFOpYuD
3i/sCfkenvwRiQX++soknS7e1l/96HWLZfxN2mpsUyyrureJ/2X8BvHceo0vm7ee5sasIxPk
/+ltvwNOi1RMtc+s+Z4dyovOYXPz5j8nnu1IMzassqXeUViqY0eVJrmXMUVSr6uc9U+ltQ0e
dXp2K1FktX1ZFzuwB0KuEZPtoWCveI1Y4I79Z4Iiwx26skWnlZLi8EPnLG/V+ZuVPR+xIvqs
twHzt/RVut94obVLHgW5jCykf4nFKS1yRkOUCxmcV9pUs+Z5afpE7rodrONiXUxrri5qZlwt
Z1C3mXNcbS9w9gVkVdhUZKK3BSdI11Iujz3v7t+Jui10VbnItZ9i0y1/aSX48Z75uzKdKTMd
DtmrONahz/Kxfic+v6zj4oAWSVP6nf5EiDtej9czSIVOIvwam3etX8+ZiTtGvveGVRTlOpXf
RTPQRTduoWr7coyujTr9W4dOQhLKAatm39QleXRjOt+Cv7BK8uiXTWfp37QlePRp3aPFfvDU
89caVbLvf4QhDPO/qy/o99Y7iKexba0M+QWQgjpxti/ZlDUzJj0v0vLGuMjFefdDcVmRroML
srmHWXUsY3SXIehkMWvKrhSikOelmw99V7cyo6mXzVV2mvJxPb6MemvrxbEvNlNpm2lv7LWs
6dKIqldv6QzDq8y25TSPYLVTzXOdVWJRxI7trydvEurfsCTwSvDVeAnOLKKbq6mMJKjp47eV
PDxqM5/wpbveGqcRkjF/UPKd5P1v7lkuKcLFXqf/lX6iL60tbxPTXnJkroUylLz9OUVloCT6
sOnWWIFgm38eW8UQeytXhhWUWVCs21olR+a1MIAa9jD0aRTBgWDo1AaNgWDo1nC0aXQsGErf
5SsulwXhetV/XNIXrB3awsGMrBzawsGMrBzawsGMrBzawsGMrBz6zQm1DMUtcAZ9jDy6Lw+s
GIrByagsGIrBy6TEZ9q5BbM16VYT0mZ9nl90bSuRxs+5Ky6S12ZNYY+G5Q+4iO6gsmpWRrFt
nGmQ1AztM9dckTlR0wiu6sbuF1ALbbxclW2kmzR3SWtFm1YY6EATHw0BMdATHw0BMdATHw0B
MdATHw0BM9zLY6Pogp/ZAT/xDmefs/vBMdATHw0BM9TDm+DAmOgpDY6vAhpX30xAnOwpDc6A
nOwpDc6AnOwpDc6AnOwpDc6Px7N9v4HLxb2WsSmFCv6NEO3bcNzd7wCuax0Ay+fMRGcVMYBQ
2BkdAZHQ2Bk9XY7Y9vwjDYu8HXQ76GrVWPTsYk1y/YYhrDKU7PLJtntwPJowTmWq4qtltGAw
ztcmw7jDP+d3SN1lJpKqFwdlhxFThapb9cMzT8GWtNL3//SePqVwN3q5441J2mr6vAJeQiHk
4BJeQiHk4BJeQiHk4BJeQiHk4P/2Y7K2qGSX9F/v9vB3Xt4Agf/neMOH43B+dgfH43B+dsH3
PDQvv5AK1r/fxsL3LVbVB58OkLaemsYhj5NEjbomN3G5CpN/rG/NzG2lKM5GikQbzLixfdAp
+AYvqTdp7VakjHb/bhtHZ/Uh1nQPdROUTQtX1aQJUdyMNjt9KbW9+xG2lT1uLfnZHvml67WU
dVVSt7xpnQPO9k6xpncPuMH2sFYbq0jbe2M2J93T0soZEtfAhq9nzSuRdOGjOiPrlj47ax2+
yet1NORBB1ggaQQNIoGEUDCqBB1ggaQQNIoGEUDCqd+9ptcjhYGipIQR9kEoogIaQENIiGER
DiohTdhDKim51z9Dya5Hacz8QX5M4mNWON5c8aom2sM1ArPOY47DZJB3v7UwP7kRb5kWqqrG
mFwuLalXnNxi0MhTUTEupZpxXsiY+/Uemew4z/yY06DVh50xSrz6YqOJfqCAvGhtKpjQp5r3
pZCdMRMvWBowmaAVOyQHD644Glq3B8s88d2mqhkDS9DINXtBrqnGAqNA1GgaDQtBo2AUbAqN
A1GgaDQtBo2AUb4JOQap2NbtFd64T35pKyZdBOeKgqDQ1Bo6AUdAqOcOd8UUanu/s+D35k3X
/a1Snvb+bpxGZv4spwW3DnC9ONL0cT8rYpr5e4XGOykmcJOqnBSdgUHI1BSdgUHI1BSdgUHI
1BSdgU/P5I1zjIWi5JawW5Hc1f8CJWHFX91tVbDXvo5aDw6AdOQnD05AdOQn/sFdO/HxImX9
cLmXVsDzRMv6lTMvSrP3GE0rQQv6xMoXp++T6p33fyfoClRo9hQZQoMIUGEKDClBhygQZQoM
IUGEKDClBhy+5KUmhw5sYjblvlv9NCvfnPDil9oJW2F4jQBKpBl0gSaQJNok2Z/5Hz6Iel0H
BlLCP7D6VqV5b+Fe28kQj/NLYO38YCkVaESnUODEnvM7yN5KlOi5FemdU56x2BsdWs+mkYfc
1OxbV05IpfTLDdOyiU+vGq6T/ckfjf4/I/ma0SkAbRiJ47pByEAZCgMBQmAITAkJAyEAZCgM
BQmAITw5nMBfW+uZjsIjvwdFzWMRsciEIUwT1ZkBEKACFAhCgQBPyCFo8VAiEcOJSwX4xBMX
+5lQBez+WP1Iq39xPMU5pwgoV+Jk/9Zk8M9ruRU1HqW3aWUyaPj0F0+aXh0A4sObKfuk4UL9
OCFsRAfCAqBgaAoGAqBgaAoGAqBgaAoGAqBg6zMA1PoOxmZuRp4Ib+p5wToPOymBOagjG4ox
+W/AIpfA7b9T5IbWNJ/RGNoKFwcUgpTeuGOoqJ+ARJUdO8j1KsvMSjY3SeYY5yeacs+mfqFQ
0hROTh4CbzaQxGUsBFbQxGUsBFbQxGUsBFbQxGUsP7oYnvmNjRAj9TyZVAwYDM2AjNwYDM2I
8rcQM25zV/otlqB56zZy1Heo+2Qrvsneb+a7/8szr7J9XGMrBzawsGMrBzawsGMrBzawsGMr
Bz6XEMrHY8F/YJCRjbFDFkRIE5/PCNIPVxQcAxGQsBEbAxGQsfJuXsPLDPIrnJWMya5fMswt
BFL7nlkszW4nEs2TmmbYuNzE+d0ghZ7WgpuMJMRdiA5K7iLm80S3a4YmHXGtQ00scv+3ynxH
tAfSjp1zqLxY7iD07A9OQvD07A9OQvD07A9OQvD07A9+TK6dFOVDxsETNYy/Lgu/UFPuPKo7
rbr2m8eRz1GU3BXdwVHc1BXdwVHnNnVs/wVv+fTUNKm6PX3e4lqtqdHeHyFNPTWswx8GixNU
NOQNlLW+v3wuTRyvh4IdJr55/4vOgU/2+PPIqX4+kG54x25WY7R2JVY9J0NXkD18pAoaNoEq
OZmmfRAKbW9yxG2nTdYa3pvzkjXzS9dLqwqqp2950ToPneS950TuPXmDb2CsN45xNPbG7k+7
JaW0Mi2PiQLIRrrRdOGj6qjsXaqRmtltdf53oit9l90J4K1ieyqlRo9haZQtMoWGULDqlB1y
gaZQtMoWGULDqlB1y+ZpW21BM3vbouwuikJWDha6uA/JTz4hVIb2+0IzGik14TJASdHatktV
Ij59t5pK9JbgYZf2/Hc5azqbBg1tev8ItVNL1bZm/O+Ym45AzGMmp/VLHz09qVjZ+5cyWw/R
MCIYPJfLVdw3SF08Fa+CNfhmvQz3Hzz1igoJao97sM14qPOY4njidjSC3dK4ndq+eMfFV5fI
UEdiZYdssbrhMyTVymoRJIcfYo0/BlLjp53bNUULxcCFohbqBUpA06YQHdLhuLLhGfefY3Tr
T46cdpoKjs1SWKcwVDVpgqUQVKoKFUlCqSBVpgqUQVKoKFUl6pTVq/vvAL3M
}
The previous "Sixteen Ways" kept the formula fixed and changed the coloring on the Outside tab. This version is the opposite, using the new "tweaking" capabilities in the newly uploaded jlb.ulb.
The coloring uses the Arithmetic Average of the distance of z from the origin, starting with iteration 8 and continuing for 100 iterations, or until bail out. All 16 mini-fractals use the same coloring with a simple gold-brown gradient.
The main formula is a simple Julia (0.3,0.0) as in the previous "Sixteen Ways" with a variety of tweaks applied after each iteration of the main formula. There are many more possibilities for you to try.
![6234d33315887.jpg](serve/attachment&path=6234d33315887.jpg)
16Ways#4 {
::0zP+cgn2t35XvttuZY87LQ/OIodzGGssItdizZQX00uUcKOtroxdDYYAG0S02qVWSHJ54m8p
fkUy/VS2i2Nn4TyzF7sGL+SKSKK+yfPUvccCzNjF8Lv+VGGZ+ZBcHTyFG/H29pG/lumGL89y
m60322YK3fy0MnLE/zA298kUHylSjcT4e+ZpOmfwfmx1Bz5/jOtJ9bTtpUTDWYmPLwnl6HOx
5ee6rflyWVp5yiz8jCdM/UkR2CO77mGRxMX/s7dIiCZGPbaknzs5BZ+xs0UjsEWYaMLhHmln
VzYxxi8NPzE/KPxxutwQ2kQHrOX2TU6TE1nrszNdcUyMxN9rf1q/SZ5Y/AeIbmoefbGL0jl4
ZN/HjNNEZYy9OmvnHyT8dHs0GTpNxDXlHvNQcv5Y+tgRWzDG9Lf43ue4Hjuj/W19TlJ26uhT
yzUV9siLv6HkJomsYeKPZr0VORTjS8fwx2iQ7VdmIyhlXW+rzDYqWkZsf4LbM7aLzVei7Uu7
3diGPej2KV9dcerRRL1tL8zcn+2oZjiuJP3MFl5dDL/7rrWFFbFNibYlZ50WqNcnLOefFk46
p+ziD4pqywhWOHiHGHtQ0EQbXj9KLdl3dVb+MxjS3n/YqR5rmmxkN9trwwUO3zpFxi2ryie8
wbLaEJb3e9pospiBDLvq5+td72vDm2l/bZd9gJu4O5hb3bvtVIxhUu67Pi5H4EGVZzm/oB3H
Le47/a45Le4dCP1siEVcNZxWZBnnkMZONLyrir6GFWkD/zWXs3qLdnB+iOdewokosm1NQ1ob
gqT3gMxlvZEmROgZxD/oqhpyOgtTo6BVbrOtttOcaz8qZswmpT8kSb7DmX7bg5mpcUjyN2wo
AP5IxDdv55NQ0qEyPQ6G7HyC+6At6YXbTFv4vBWNPzPQMr5xY839D9cejnXDTu6ZjfzPkzSU
TdeYLuxx3TM/QDz/5D2eAVeR9VxUdFz/+/kZkYS4mlZHVvw8jtjQZYppl1x4SVXRWQFOSRoN
PXYN4h5NSeTGlsM5ciG5NnKdtoxJn50y2yu6sPeYTev/yX73tmX6v335vzr89DTFP2m7Tsqn
Q8GH5gfj0oAfPnu0+96eR3eXKSa08sypNIaSRStr0/S3gNdcqwFz3nw88F/0bjCEOuFOpYuD
3i/sCfkenvwRiQX++soknS7e1l/96HWLZfxN2mpsUyyrureJ/2X8BvHceo0vm7ee5sasIxPk
/+ltvwNOi1RMtc+s+Z4dyovOYXPz5j8nnu1IMzassqXeUViqY0eVJrmXMUVSr6uc9U+ltQ0e
dXp2K1FktX1ZFzuwB0KuEZPtoWCveI1Y4I79Z4Iiwx26skWnlZLi8EPnLG/V+ZuVPR+xIvqs
twHzt/RVut94obVLHgW5jCykf4nFKS1yRkOUCxmcV9pUs+Z5afpE7rodrONiXUxrri5qZlwt
Z1C3mXNcbS9w9gVkVdhUZKK3BSdI11Iujz3v7t+Jui10VbnItZ9i0y1/aSX48Z75uzKdKTMd
DtmrONahz/Kxfic+v6zj4oAWSVP6nf5EiDtej9czSIVOIvwam3etX8+ZiTtGvveGVRTlOpXf
RTPQRTduoWr7coyujTr9W4dOQhLKAatm39QleXRjOt+Cv7BK8uiXTWfp37QlePRp3aPFfvDU
89caVbLvf4QhDPO/qy/o99Y7iKexba0M+QWQgjpxti/ZlDUzJj0v0vLGuMjFefdDcVmRroML
srmHWXUsY3SXIehkMWvKrhSikOelmw99V7cyo6mXzVV2mvJxPb6MemvrxbEvNlNpm2lv7LWs
6dKIqldv6QzDq8y25TSPYLVTzXOdVWJRxI7trydvEurfsCTwSvDVeAnOLKKbq6mMJKjp47eV
PDxqM5/wpbveGqcRkjF/UPKd5P1v7lkuKcLFXqf/lX6iL60tbxPTXnJkroUylLz9OUVloCT6
sOnWWIFgm38eW8UQeytXhhWUWVCs21olR+a1MIAa9jD0aRTBgWDo1AaNgWDo1nC0aXQsGErf
5SsulwXhetV/XNIXrB3awsGMrBzawsGMrBzawsGMrBzawsGMrBz6zQm1DMUtcAZ9jDy6Lw+s
GIrByagsGIrBy6TEZ9q5BbM16VYT0mZ9nl90bSuRxs+5Ky6S12ZNYY+G5Q+4iO6gsmpWRrFt
nGmQ1AztM9dckTlR0wiu6sbuF1ALbbxclW2kmzR3SWtFm1YY6EATHw0BMdATHw0BMdATHw0B
MdATHw0BM9zLY6Pogp/ZAT/xDmefs/vBMdATHw0BM9TDm+DAmOgpDY6vAhpX30xAnOwpDc6A
nOwpDc6AnOwpDc6AnOwpDc6Px7N9v4HLxb2WsSmFCv6NEO3bcNzd7wCuax0Ay+fMRGcVMYBQ
2BkdAZHQ2Bk9XY7Y9vwjDYu8HXQ76GrVWPTsYk1y/YYhrDKU7PLJtntwPJowTmWq4qtltGAw
ztcmw7jDP+d3SN1lJpKqFwdlhxFThapb9cMzT8GWtNL3//SePqVwN3q5441J2mr6vAJeQiHk
4BJeQiHk4BJeQiHk4BJeQiHk4P/2Y7K2qGSX9F/v9vB3Xt4Agf/neMOH43B+dgfH43B+dsH3
PDQvv5AK1r/fxsL3LVbVB58OkLaemsYhj5NEjbomN3G5CpN/rG/NzG2lKM5GikQbzLixfdAp
+AYvqTdp7VakjHb/bhtHZ/Uh1nQPdROUTQtX1aQJUdyMNjt9KbW9+xG2lT1uLfnZHvml67WU
dVVSt7xpnQPO9k6xpncPuMH2sFYbq0jbe2M2J93T0soZEtfAhq9nzSuRdOGjOiPrlj47ax2+
yet1NORBB1ggaQQNIoGEUDCqBB1ggaQQNIoGEUDCqd+9ptcjhYGipIQR9kEoogIaQENIiGER
DiohTdhDKim51z9Dya5Hacz8QX5M4mNWON5c8aom2sM1ArPOY47DZJB3v7UwP7kRb5kWqqrG
mFwuLalXnNxi0MhTUTEupZpxXsiY+/Uemew4z/yY06DVh50xSrz6YqOJfqCAvGhtKpjQp5r3
pZCdMRMvWBowmaAVOyQHD644Glq3B8s88d2mqhkDS9DINXtBrqnGAqNA1GgaDQtBo2AUbAqN
A1GgaDQtBo2AUb4JOQap2NbtFd64T35pKyZdBOeKgqDQ1Bo6AUdAqOcOd8UUanu/s+D35k3X
/a1Snvb+bpxGZv4spwW3DnC9ONL0cT8rYpr5e4XGOykmcJOqnBSdgUHI1BSdgUHI1BSdgUHI
1BSdgU/P5I1zjIWi5JawW5Hc1f8CJWHFX91tVbDXvo5aDw6AdOQnD05AdOQn/sFdO/HxImX9
cLmXVsDzRMv6lTMvSrP3GE0rQQv6xMoXp++T6p33fyfoClRo9hQZQoMIUGEKDClBhygQZQoM
IUGEKDClBhy+5KUmhw5sYjblvlv9NCvfnPDil9oJW2F4jQBKpBl0gSaQJNok2Z/5Hz6Iel0H
BlLCP7D6VqV5b+Fe28kQj/NLYO38YCkVaESnUODEnvM7yN5KlOi5FemdU56x2BsdWs+mkYfc
1OxbV05IpfTLDdOyiU+vGq6T/ckfjf4/I/ma0SkAbRiJ47pByEAZCgMBQmAITAkJAyEAZCgM
BQmAITw5nMBfW+uZjsIjvwdFzWMRsciEIUwT1ZkBEKACFAhCgQBPyCFo8VAiEcOJSwX4xBMX
+5lQBez+WP1Iq39xPMU5pwgoV+Jk/9Zk8M9ruRU1HqW3aWUyaPj0F0+aXh0A4sObKfuk4UL9
OCFsRAfCAqBgaAoGAqBgaAoGAqBgaAoGAqBg6zMA1PoOxmZuRp4Ib+p5wToPOymBOagjG4ox
+W/AIpfA7b9T5IbWNJ/RGNoKFwcUgpTeuGOoqJ+ARJUdO8j1KsvMSjY3SeYY5yeacs+mfqFQ
0hROTh4CbzaQxGUsBFbQxGUsBFbQxGUsBFbQxGUsP7oYnvmNjRAj9TyZVAwYDM2AjNwYDM2I
8rcQM25zV/otlqB56zZy1Heo+2Qrvsneb+a7/8szr7J9XGMrBzawsGMrBzawsGMrBzawsGMr
Bz6XEMrHY8F/YJCRjbFDFkRIE5/PCNIPVxQcAxGQsBEbAxGQsfJuXsPLDPIrnJWMya5fMswt
BFL7nlkszW4nEs2TmmbYuNzE+d0ghZ7WgpuMJMRdiA5K7iLm80S3a4YmHXGtQ00scv+3ynxH
tAfSjp1zqLxY7iD07A9OQvD07A9OQvD07A9OQvD07A9+TK6dFOVDxsETNYy/Lgu/UFPuPKo7
rbr2m8eRz1GU3BXdwVHc1BXdwVHnNnVs/wVv+fTUNKm6PX3e4lqtqdHeHyFNPTWswx8GixNU
NOQNlLW+v3wuTRyvh4IdJr55/4vOgU/2+PPIqX4+kG54x25WY7R2JVY9J0NXkD18pAoaNoEq
OZmmfRAKbW9yxG2nTdYa3pvzkjXzS9dLqwqqp2950ToPneS950TuPXmDb2CsN45xNPbG7k+7
JaW0Mi2PiQLIRrrRdOGj6qjsXaqRmtltdf53oit9l90J4K1ieyqlRo9haZQtMoWGULDqlB1y
gaZQtMoWGULDqlB1y+ZpW21BM3vbouwuikJWDha6uA/JTz4hVIb2+0IzGik14TJASdHatktV
Ij59t5pK9JbgYZf2/Hc5azqbBg1tev8ItVNL1bZm/O+Ym45AzGMmp/VLHz09qVjZ+5cyWw/R
MCIYPJfLVdw3SF08Fa+CNfhmvQz3Hzz1igoJao97sM14qPOY4njidjSC3dK4ndq+eMfFV5fI
UEdiZYdssbrhMyTVymoRJIcfYo0/BlLjp53bNUULxcCFohbqBUpA06YQHdLhuLLhGfefY3Tr
T46cdpoKjs1SWKcwVDVpgqUQVKoKFUlCqSBVpgqUQVKoKFUl6pTVq/vvAL3M
}