I’ve uploaded a new version of jlb.ulb with a new fractal plug-in formula, ThreeLevel. It’s a Barnsley-type formulas; these formulas define a critical value, and at each iteration some combination of z and c is compared to the critical value. If the combination is above the critical value, one formula is used; if below, another formula is used.

ThreeLevel uses two critical values and three formulas, upper, middle, and lower. (If the two critical values are equal, the middle formula is not used.) All the formulas have to be SFormulas, defined in jlb.ulb.

There is also a transition parameter. If it’s zero, then the transition between formulas is abrupt, as in most Barnsley-type formulas. If it’s above zero, there’s a smooth transition using all three formulas.

ThreeLevel is an SFormula that plugs into SwitchCombo from jlb.ulb, which plugs into Switch Combo Formula from jlb.ufm. (You can use the example as a template for experimenting.)

The example fractal shows six variations on my Valentine 2021 fractal. Each variation is one layer, and all use the same gradient and the same simple coloring. They are arranged using a new plug-in transformation in jlb.ulb, MoveCenter, which just shifts the layer’s center to another location using screen-relative coordinates.

The upper formula is a Mandelbrot/Julia variant. The middle formula is a convergent Newton/Julia variant. The lower formula is a standard convergent Lambda. The overall effect is divergent.

Starting from the upper left corner and going clockwise (or counter-clockwise!) exactly one of three values, the two critical values and the transition parameter, is slightly changed from one fractal to the next.
604e375b8852a.jpg

ValentineVariations {
::IMeNZhn2t35SPutNQc87Lw+dQQnaBasFpenCeJLaDQgdQA20cooAG0y02qRWSQS2b8+pvk69
r120dT6mmJHCWTy/zMa4IKR+LZ96EqXGN413ejiSmfWAjo+JaALMzPkp8JaiPNzPKMVV5B/V
ZbJOaIltM/NbzIm6GKB0jskUilQtXCblfWKR9d+7UeTwe2vqPFZMFrhRqKUuBpB+0U/wNkjs
0bvJXaub9oxCfQUPgI4fR5AW83ZJ0wU/825yjipe+ZHJINNldskNsdRrYkARcwCF2YHLbb0K
yu9BZ+x000C9x0E+VSh/2Rjj5Ovwj8WZJEtJopc7R3ESmYYyjxN8LfXtCtrjS2lSQ3eT9nyl
u2nnco74pp7zohroJrms/LrVV4WM5IR9tsQWiv3Hr0oK0Evo2G3FwDOi6fHscy+glv+dzezi
5RHY3lHQjO4JHWspwo5X9j0ddDiB8EmYfKL58jbbUi/ji0iV+fGxQcrw7Hbe7NiG3HQzTK7o
fxXkQR62OKxsEvtMvPTiWvuV6K/SedRCpMZd/D+ZebvLa3yofvwaqcXeYxw2bi4S3OSeslK1
hjdQasXnrPlj49n6vLOglm7DCeoFiXEH9APFgn+E6zV6JiuxlvjXNdsoUVZYvpZURmf6ICTZ
sVkXh4TKj661LuvMJi6mvefU2W+NEV9qeatdzfndsV/s4a9sDuMSe8+TObPJERQDv89XS9DI
hRjm28X+xjx8iv/UZl/Bx6GpqjMoy+EudUHXMkMhl4r7MSvFrcYYOuWvowS7/bvy6kJDc3Zo
PuNhxmxOwCusJJsETSYZmkEDeYwIWc8kiiXMPPpNeRd3RmXFjmeu4IfdfP6y0TGs8njcurH+
DZOV/n/iLflxzOqmf+P6tqP/2dWwykosiB8XCDVsA4lYMpmp7qTiZ9uC7HySbiq6hRvZ9pFV
sA3Ezpy5r0sVy6pilwlzR0Loqt94XK54jXQX4RD8I6SLLKgn3MkU2W/VXydsN/88nzC75XZh
98rtwe+/+C75SsQXXVX8juHIkXbLrzO17n8Uqkr4eukF3zbKulXmo4WTSVSXbPrbt9M6ulro
X6DjbZmrsqe21WVLE2NY5yRSI/KWqe2l/U8eiksYWoZJNlReMfDZXmk1E+WPlyFXRl5sqbzQ
SKb515GpVJ/tNzqut5sVCnac8JsL4FxrfPcmxo2o+lwphJD79kvEev3B3PMlHrFH6R+Oc55y
woQ2t3EtPbYXBRbGdj/eB934/bTor85NdXUAfv0hbKXjwr8jlbbtxC8FWq+wi73Fx3I0YKGs
51+9W95mVXGovMwaPyBDr3jI62pYfW8sDBhdmwHQlBzzUp5hOPFqwfIa+JGRcdV85PW9LEDu
jytERrqFMusFklttuDK3fl9ZYU2njljmhrVd729tipW9ItsQWtNidLHY6aYbU1hrZjGTLDn6
2rtejV4XBd9ISrlH1RGVWFhNa5ObDbnGjgMsGXjxArbWF0W6WuGIcLjYXF2ID+ljDysqDXju
aqbfkrHcd4rjsQ26VDG3Mdg4pEbL7qOMyvPsRDGrV3V/pDsZj1ttdsqb3G3YEEyG7YpXVagr
DfhGN36Iytv11LqrrHsrZd9lerw3WXzxtKFrbY0VQTqQfQ4rXH+m686Tzq6O96SpWZS964uW
e7Ee5pV27OjiBqVfWmYTzaxj0oluQ+w25OaYjiKwRa10ujNMsqrnGzji6jRaF7MegorbOWrG
6j1aRRQrOO9BAjm4abCHC8X7DB+pPBYzxNBc8vwx/CH/Lc8v/P44fzfEDcEwwRADHB8z9RA/
hogjvn9QWU43NHBc/Q+qPCYJK3m3su3rqfjrL+wcDOuI3hfQUwKl2VsN81yJ6ydgraSfar83
4QaJY5loL/hHbIvXMlXil8SslXij8ScvipS5n+/MfrfE1U/wf6xfW9KIVg+qSqoI+wFnhscR
Gm48VGKiY3UF3dXsmkczVBxblNbkmxilOKvsjFGgpAwUAYK9gpcJbJCopA0UAaKANFgmCQT5
5mmimolOEVK4n0DqCQU5Z9fW9O65/B4qAcVAuKAXFgryJ5qIsDgWBQrAoVA0KAaFAtCgWBQr
8DFaF4/oKAbFgtCwWBYrAsVA2KAbFgtyLL2KT0wmAflvj4rYD8VA+KAfFgvy/d8VOX8W+YFA
zCgZBwsAYWAMLAmFAzCgZBwsAYWAMLAmFAzCgZBwsAYWAMLAmlf4wsgBELvg/lCGAXBgrAwV
A4Kv8hrcuvXIOjZoDr4AqKAVFgqCQVBoqAUVAqKAVFgqCQVBoqAUVAqKAVFgqCQVBoqAUVeJ
+LGszRUB+aW5b2312n6rbbAtCgWBQrAoVgvut1AuKAXFgrCwVB4qAcVAuKAXFgrCwVB4qAcV
AuKAXFgrCwVB4qAcV+2wV5fAmwXeiB==
}

I’ve uploaded a new version of jlb.ulb with a new fractal plug-in formula, ThreeLevel. It’s a Barnsley-type formulas; these formulas define a critical value, and at each iteration some combination of z and c is compared to the critical value. If the combination is above the critical value, one formula is used; if below, another formula is used. ThreeLevel uses two critical values and three formulas, upper, middle, and lower. (If the two critical values are equal, the middle formula is not used.) All the formulas have to be SFormulas, defined in jlb.ulb. There is also a transition parameter. If it’s zero, then the transition between formulas is abrupt, as in most Barnsley-type formulas. If it’s above zero, there’s a smooth transition using all three formulas. ThreeLevel is an SFormula that plugs into SwitchCombo from jlb.ulb, which plugs into Switch Combo Formula from jlb.ufm. (You can use the example as a template for experimenting.) The example fractal shows six variations on my Valentine 2021 fractal. Each variation is one layer, and all use the same gradient and the same simple coloring. They are arranged using a new plug-in transformation in jlb.ulb, MoveCenter, which just shifts the layer’s center to another location using screen-relative coordinates. The upper formula is a Mandelbrot/Julia variant. The middle formula is a convergent Newton/Julia variant. The lower formula is a standard convergent Lambda. The overall effect is divergent. Starting from the upper left corner and going clockwise (or counter-clockwise!) exactly one of three values, the two critical values and the transition parameter, is slightly changed from one fractal to the next. ![604e375b8852a.jpg](serve/attachment&path=604e375b8852a.jpg) ValentineVariations { ::IMeNZhn2t35SPutNQc87Lw+dQQnaBasFpenCeJLaDQgdQA20cooAG0y02qRWSQS2b8+pvk69 r120dT6mmJHCWTy/zMa4IKR+LZ96EqXGN413ejiSmfWAjo+JaALMzPkp8JaiPNzPKMVV5B/V ZbJOaIltM/NbzIm6GKB0jskUilQtXCblfWKR9d+7UeTwe2vqPFZMFrhRqKUuBpB+0U/wNkjs 0bvJXaub9oxCfQUPgI4fR5AW83ZJ0wU/825yjipe+ZHJINNldskNsdRrYkARcwCF2YHLbb0K yu9BZ+x000C9x0E+VSh/2Rjj5Ovwj8WZJEtJopc7R3ESmYYyjxN8LfXtCtrjS2lSQ3eT9nyl u2nnco74pp7zohroJrms/LrVV4WM5IR9tsQWiv3Hr0oK0Evo2G3FwDOi6fHscy+glv+dzezi 5RHY3lHQjO4JHWspwo5X9j0ddDiB8EmYfKL58jbbUi/ji0iV+fGxQcrw7Hbe7NiG3HQzTK7o fxXkQR62OKxsEvtMvPTiWvuV6K/SedRCpMZd/D+ZebvLa3yofvwaqcXeYxw2bi4S3OSeslK1 hjdQasXnrPlj49n6vLOglm7DCeoFiXEH9APFgn+E6zV6JiuxlvjXNdsoUVZYvpZURmf6ICTZ sVkXh4TKj661LuvMJi6mvefU2W+NEV9qeatdzfndsV/s4a9sDuMSe8+TObPJERQDv89XS9DI hRjm28X+xjx8iv/UZl/Bx6GpqjMoy+EudUHXMkMhl4r7MSvFrcYYOuWvowS7/bvy6kJDc3Zo PuNhxmxOwCusJJsETSYZmkEDeYwIWc8kiiXMPPpNeRd3RmXFjmeu4IfdfP6y0TGs8njcurH+ DZOV/n/iLflxzOqmf+P6tqP/2dWwykosiB8XCDVsA4lYMpmp7qTiZ9uC7HySbiq6hRvZ9pFV sA3Ezpy5r0sVy6pilwlzR0Loqt94XK54jXQX4RD8I6SLLKgn3MkU2W/VXydsN/88nzC75XZh 98rtwe+/+C75SsQXXVX8juHIkXbLrzO17n8Uqkr4eukF3zbKulXmo4WTSVSXbPrbt9M6ulro X6DjbZmrsqe21WVLE2NY5yRSI/KWqe2l/U8eiksYWoZJNlReMfDZXmk1E+WPlyFXRl5sqbzQ SKb515GpVJ/tNzqut5sVCnac8JsL4FxrfPcmxo2o+lwphJD79kvEev3B3PMlHrFH6R+Oc55y woQ2t3EtPbYXBRbGdj/eB934/bTor85NdXUAfv0hbKXjwr8jlbbtxC8FWq+wi73Fx3I0YKGs 51+9W95mVXGovMwaPyBDr3jI62pYfW8sDBhdmwHQlBzzUp5hOPFqwfIa+JGRcdV85PW9LEDu jytERrqFMusFklttuDK3fl9ZYU2njljmhrVd729tipW9ItsQWtNidLHY6aYbU1hrZjGTLDn6 2rtejV4XBd9ISrlH1RGVWFhNa5ObDbnGjgMsGXjxArbWF0W6WuGIcLjYXF2ID+ljDysqDXju aqbfkrHcd4rjsQ26VDG3Mdg4pEbL7qOMyvPsRDGrV3V/pDsZj1ttdsqb3G3YEEyG7YpXVagr DfhGN36Iytv11LqrrHsrZd9lerw3WXzxtKFrbY0VQTqQfQ4rXH+m686Tzq6O96SpWZS964uW e7Ee5pV27OjiBqVfWmYTzaxj0oluQ+w25OaYjiKwRa10ujNMsqrnGzji6jRaF7MegorbOWrG 6j1aRRQrOO9BAjm4abCHC8X7DB+pPBYzxNBc8vwx/CH/Lc8v/P44fzfEDcEwwRADHB8z9RA/ hogjvn9QWU43NHBc/Q+qPCYJK3m3su3rqfjrL+wcDOuI3hfQUwKl2VsN81yJ6ydgraSfar83 4QaJY5loL/hHbIvXMlXil8SslXij8ScvipS5n+/MfrfE1U/wf6xfW9KIVg+qSqoI+wFnhscR Gm48VGKiY3UF3dXsmkczVBxblNbkmxilOKvsjFGgpAwUAYK9gpcJbJCopA0UAaKANFgmCQT5 5mmimolOEVK4n0DqCQU5Z9fW9O65/B4qAcVAuKAXFgryJ5qIsDgWBQrAoVA0KAaFAtCgWBQr 8DFaF4/oKAbFgtCwWBYrAsVA2KAbFgtyLL2KT0wmAflvj4rYD8VA+KAfFgvy/d8VOX8W+YFA zCgZBwsAYWAMLAmFAzCgZBwsAYWAMLAmFAzCgZBwsAYWAMLAmlf4wsgBELvg/lCGAXBgrAwV A4Kv8hrcuvXIOjZoDr4AqKAVFgqCQVBoqAUVAqKAVFgqCQVBoqAUVAqKAVFgqCQVBoqAUVeJ +LGszRUB+aW5b2312n6rbbAtCgWBQrAoVgvut1AuKAXFgrCwVB4qAcVAuKAXFgrCwVB4qAcV AuKAXFgrCwVB4qAcV+2wV5fAmwXeiB== }
 
0
reply

Thanks for sharing your formula. Looks interesting!

Thanks for sharing your formula. Looks interesting!

Chris Martin
Gallery: Velvet--Glove.deviantart.com

Currently using UF6.05 on Windows 11 Professional 64-bit

 
0
reply

I developed the SFormulas so that I could mix M-type and J-type, and combine basic formulas to make my own complicated formulas. I'd like it if some other people tried them out.

I developed the SFormulas so that I could mix M-type and J-type, and combine basic formulas to make my own complicated formulas. I'd like it if some other people tried them out.
 
0
reply

ThreeLevel does seem quite complicated... to my simple mind anyway.

As formulas and maths goes over my head I usually work visually and with a lot of trial and error. So do bear that in mind when looking at my first attempt here, a heavy adaptation of one of your layers: smile

605111e9e2398.jpg

Waterfall {
; Copyright © 2021 by Christine-Ann Martin.
::GUwq7hn2diVbPOqNQ4vvS7/BEftaJYbw2cV8h2VtnUVS1JtXVlqqUkDY2474tCe39y+rvDvG
  IwmEy3gZmnnZ8MD2jJqQEoFxf6+7MM0Kds038vFaZRkIO204NVoevPyGZbsXqeevu55YxBZR
  pPqCUQhMUpL9NfcfhqUrSlP8LppGbEFwz/MZFiuCbjRm3fXNqaHFIy1qsUfz1ViMImGZ5iAl
  +AQvtRiUvPL0P5lYtKXUWaoLEpl5iCZq2/gs8+7SE55q0nb4CkKL8ttQEEFTcJcOzdltF2Gh
  QUCCCYsRi45UfE2yl44ypGi0nhFKCzsQucYVElVAeTUzXi4HqKCROImRusIYvM47+ZRRGiwv
  9SZdEYEpilpiEIZ9t4dWvElYWBFikiD+mP9mSHs/xskdZ/eDxmG5bfd7U5VL3Kg5bbjgHjh1
  bLpx7+0fs+XHiycqtWvu9ZZqsQFUn6moM6cOC0XqSyjll1+wHPlh8t5ZvBZD8qPAfNygqobe
  4Ji0wDNVNjpaL1Qbiv9qZAWKlh+Pgswuz66otP1mERjzX/ZmeP0b0p188YHn/uotdPXtWvox
  tRy7Pd2qtVKyHNd5r2JUx+pZzm2U7+6hco57fMCVvKLeWWaOjRt6qc7sOuxEdFTJZhzot5zk
  HccnHcQWarD+tHonNbgHXi+6+Cpct8VZ81VlwLoKhXSVqy4pBTz+anBU+2N1Zt57qHbZdbMa
  1liDoAA1z3NCz0/kRwFTHQLjFjdJrw+YLE9cmc51a9evg3svQFewz/14q9Xkigsgvftl6B8s
  oy+YcLoFYMwTi2FivrzY2vb/YQX9edTAqDb9V01BJyXoFp7XkTaOBw2COYl7QZrewG6G4I7L
  2AOkGxV8RwI7xLEwuFaf+29qwFVp2MuveDcymMeXRmuxg/tiomz6vGyuxm7N3azdFwTD5FTx
  1vz3YU3UD+m2G8l6szNxyHhaZtnbWY3WVUJ2GIiDuBYZxhVTItIU1t2LJvtecv9aRyuQxy3y
  e9N2Vv+W7qrAOOYB4oFA/G2xed/x6W2MPuLBa1ss5IXKdZeepN3VY2JKl+vf174vG2xvUluI
  XcDdqr7+sDtQY7uN3sYUL/zo1X9JEnzOog1Nqe34yzNr+lHV/sTq3Mo+HMn+JjprSLhot5++
  Vz2FBZz0sU593l9ieqqy/rQbUIzlCNY2gL++EMHRooI06lg4h3+9zNf+/5CRoCE9YWcWBcLo
  29QCaft9iuHJB24p7ltPlkBXdaOETuu7pa7e/4uPTw3GYDtciZncEyYlV3MDyV+IM3CMojw6
  8WZdoXlpgDZF1/kDC1QBH7+DfHbPjam8RUmrnDzpTBBX/nMq1xpUXqDvXlTrc7WJAdnIgNCM
  B50xLFNwfMHWHpcyYzrw3q5Uy5dhMlQ9cQ4WxI4pWqdgVCs33ROQE08YmsUQEWrECiiYNZhW
  Vu95KEkNYUWnCOaAGMunLeP7DYhf0BMGn2ZM+YlAxwcKxrTBBdMZWhx2D3r60wHPI8Zeue9k
  46dkEwBEbuXXJBPI8HhhPhd+g6qLxBjd7akI9hPHSNEWXuhg7kjh+GiH5YmgMtPiMobkxwI3
  OFuDVQgB9HQTf4zpcbHv+IaS4T6T9QTGFRBSa/Hfn8dSj529/BQsbfg4NjQa9iaqcP2MCRYn
  5k6yGxhT3qAqIzYe1v1aGpY+8BCh4OnUHycSZ4TI5+7+fsdh00L=
}
ThreeLevel does seem quite complicated... to my simple mind anyway. As formulas and maths goes over my head I usually work visually and with a lot of trial and error. So do bear that in mind when looking at my first attempt here, a heavy adaptation of one of your layers: (wasntme) ![605111e9e2398.jpg](serve/attachment&path=605111e9e2398.jpg) ```` Waterfall { ; Copyright © 2021 by Christine-Ann Martin. ::GUwq7hn2diVbPOqNQ4vvS7/BEftaJYbw2cV8h2VtnUVS1JtXVlqqUkDY2474tCe39y+rvDvG IwmEy3gZmnnZ8MD2jJqQEoFxf6+7MM0Kds038vFaZRkIO204NVoevPyGZbsXqeevu55YxBZR pPqCUQhMUpL9NfcfhqUrSlP8LppGbEFwz/MZFiuCbjRm3fXNqaHFIy1qsUfz1ViMImGZ5iAl +AQvtRiUvPL0P5lYtKXUWaoLEpl5iCZq2/gs8+7SE55q0nb4CkKL8ttQEEFTcJcOzdltF2Gh QUCCCYsRi45UfE2yl44ypGi0nhFKCzsQucYVElVAeTUzXi4HqKCROImRusIYvM47+ZRRGiwv 9SZdEYEpilpiEIZ9t4dWvElYWBFikiD+mP9mSHs/xskdZ/eDxmG5bfd7U5VL3Kg5bbjgHjh1 bLpx7+0fs+XHiycqtWvu9ZZqsQFUn6moM6cOC0XqSyjll1+wHPlh8t5ZvBZD8qPAfNygqobe 4Ji0wDNVNjpaL1Qbiv9qZAWKlh+Pgswuz66otP1mERjzX/ZmeP0b0p188YHn/uotdPXtWvox tRy7Pd2qtVKyHNd5r2JUx+pZzm2U7+6hco57fMCVvKLeWWaOjRt6qc7sOuxEdFTJZhzot5zk HccnHcQWarD+tHonNbgHXi+6+Cpct8VZ81VlwLoKhXSVqy4pBTz+anBU+2N1Zt57qHbZdbMa 1liDoAA1z3NCz0/kRwFTHQLjFjdJrw+YLE9cmc51a9evg3svQFewz/14q9Xkigsgvftl6B8s oy+YcLoFYMwTi2FivrzY2vb/YQX9edTAqDb9V01BJyXoFp7XkTaOBw2COYl7QZrewG6G4I7L 2AOkGxV8RwI7xLEwuFaf+29qwFVp2MuveDcymMeXRmuxg/tiomz6vGyuxm7N3azdFwTD5FTx 1vz3YU3UD+m2G8l6szNxyHhaZtnbWY3WVUJ2GIiDuBYZxhVTItIU1t2LJvtecv9aRyuQxy3y e9N2Vv+W7qrAOOYB4oFA/G2xed/x6W2MPuLBa1ss5IXKdZeepN3VY2JKl+vf174vG2xvUluI XcDdqr7+sDtQY7uN3sYUL/zo1X9JEnzOog1Nqe34yzNr+lHV/sTq3Mo+HMn+JjprSLhot5++ Vz2FBZz0sU593l9ieqqy/rQbUIzlCNY2gL++EMHRooI06lg4h3+9zNf+/5CRoCE9YWcWBcLo 29QCaft9iuHJB24p7ltPlkBXdaOETuu7pa7e/4uPTw3GYDtciZncEyYlV3MDyV+IM3CMojw6 8WZdoXlpgDZF1/kDC1QBH7+DfHbPjam8RUmrnDzpTBBX/nMq1xpUXqDvXlTrc7WJAdnIgNCM B50xLFNwfMHWHpcyYzrw3q5Uy5dhMlQ9cQ4WxI4pWqdgVCs33ROQE08YmsUQEWrECiiYNZhW Vu95KEkNYUWnCOaAGMunLeP7DYhf0BMGn2ZM+YlAxwcKxrTBBdMZWhx2D3r60wHPI8Zeue9k 46dkEwBEbuXXJBPI8HhhPhd+g6qLxBjd7akI9hPHSNEWXuhg7kjh+GiH5YmgMtPiMobkxwI3 OFuDVQgB9HQTf4zpcbHv+IaS4T6T9QTGFRBSa/Hfn8dSj529/BQsbfg4NjQa9iaqcP2MCRYn 5k6yGxhT3qAqIzYe1v1aGpY+8BCh4OnUHycSZ4TI5+7+fsdh00L= } ````

Chris Martin
Gallery: Velvet--Glove.deviantart.com

Currently using UF6.05 on Windows 11 Professional 64-bit

 
0
reply

True, it is somewhat complicated, though simple in concept (3 formulas: upper, middle, and lower). Many formulas in the database are complicated, such as Strange Brew in tma.ufm, with many parameters to choose from.

Here's another sample.

alt="60561bb5b3b06.jpg">
ThreeLevelExample {
; Copyright © 2021 by Christine-Ann Martin.
::XE1qWhn2trRXvNOOu3Hg5/gRedQ7YJ5P3F+hd7tziZR6eP05e5wBE4Yrk4dcs9Yr2mUs/4Pq
vlT80209wdAHcRAKFFJFFJFtko20nXwyr/h3/OPPWFrmmt4L76p0l0Ho1e/yh89d10FePWVy
2ll477tjWtdHLLCArzPS7HyIceL6plVshsF/W1evfu+e6PS+I2H+hR/4N76rGYVN0r+pmGvb
z7BYobUko7Fv/dCBJUhi8OWVbDXJqa8+79rrYefpPvbw7zfehXbXeRF7YGCG890+t09tl0sd
3T5suny21Wmt/+aWVX+wgHrPvZoLvn2wyOSHe/72n31V1sVOQAWafm/HBJlvtJDddoXezWY+
n6/+3tptHkTugy95Hq4kiDwBed0+id0ivm1uZjXe5fc/gQ2ebqqpN57Br3fUv+673sfBnVYM
6Pmt4uHrYF7upd/62PJF8CvuVPs6c88ZGnxuVKN4maYmoEa96f43W+zuct4cav+hVbpN0+qC
hV6sO38cDE0/QF3hPIGjM85SobVX7jcrxH/O8L4sgrdTz++8myjS/h359OwgoDhX58uo0ysr
QXjDnco3s6OlREN2e97tMIWaru3FPPvjtfvItaY+c9FJWpJPd3z6tvuBlhOf6XtOvqOrpdSz
W16vcsDC++nelVPwXYMsYCiU9xH2JHYJJMukgFWT0rcByVBhTzcRbjaA+lrieWrBesLymx51
5lwXgXCfJeJOxnrMZoXgpuV3KsaTHVPmSRYM6jvkeIysVBpmeWlFJT++ckgzwQqtnhiXe6JS
kCZIjDfBCtw/jxO4bhF90619tMJB/LugkpBfNC7ic3j57Cc9jZ8UV+iFxrPoYMXv68cnxIr8
iHsnLZ+3jr8XR4rL9rvQ67WlvqIvu4NwWbdJ/jHXEX7qgVaTmXdaeudco9nuvp41m1yRIvxQ
6bfrh0cGdVVgZ0FwsOY+SsTmYZV41mXHXbyGqaugRB+e/lEoAMgvQG6uoFI3ehB83+GiBX+f
y0rLfjxiLfrxiL/rned5bJicpOi0/6g0o44P6fNKII+y4/CTyu8Nlkd5Fmkd5FGzt8tlkd5b
KJ7SdA+rZ7Rf/VCdreNbyVvH3gvzOcf2N4K3f73Z7tns72qmBQVlnbmv/oNgLupth6N0WXVm
FgTSDiw4Y87fX79MDtlUgP4IsQoXaA8nl562tOHjktP/67LqdPGJ/IxiTELOQ8n/8V3lv/DA
diDTCHEnfuZ81xQLxmHv7+9AYe5DErhvotOrnmXD5iHYHrpfqpILf9A0DoGdbqzfotP7m62B
6AjjE2K8wOu/WcgE9GF72AqPGAeEwDZ1b2gyK4iRAjlwdrauXuJWYKzFWxGYwENkShe4gIzt
EErA3UNImIcY56G/r9R6GEhiw676y8Nzo277z+bVwJHbKo8hlPJJ8uKFqHni+P1Y1D4o7DUm
NEuYg1Tb2y2pUhC54KbAhEyjjBAYNARDEoNJcznM68nvnxo9bqP6dz99PQXI9BII2AgG2l3R
/Jx1Gg0s6gTOAOIIniI4UEhTImoTJK+UEJniIdCxg8PlKE6MMSVuEM/t8DuLFiqJG8i8QCUm
O4Ar8CcYiDcgNwg3M0prIH4YH4EH40xsDKutPQn1eewPgF3WD4jV3xA89HRo2Q1TUtJoPnJn
mftqDJ7FgwyjN7rc25118bFKnfbVDSnLHNnS9Zy4tF3cEPYsLnHWIjr7p8lrUVIxQnCAO1p4
q10Z/qVt63DLYVNlfxTMxqROzyasZW+Eq1Gb/EaQFI/EiqgAvTra6DgDWsaCAN5gzV08Qe/X
kjrST68Vs/NNQnel830AdOby6b6F3td5llZ/OPL5GI9wGY/oHYH473zp9RRbe6De+Ij14AYO
RHUjnoxRnG4DqhQ04oTDyBriIar7sTEGbnV0DdHM5j6MUBIl//oO6W8pZhV/gjHoYUjjONOc
Yc45xjuRkqYndYJQxOItCVE/tXk+cxTf4Pf6PVns4JZ3osFccaawaisUgHTBZSxQMEBTYbu4
OiFEbBDs2RoVotjIFI7RlDh9I2ARMQB2oS2jhG0RKo2usPYiCMWPZTsrBUiicCJBn0OM7Jaf
rpZkopy/Vuf4rSrNHgP4VNPwMYwaUKXC4ksLKZHy3zUXtafTpgUggNr3LJGAYHk5UAwqmKW2
TKjOs4NA+KOkVojW690CRwA7gbiM2hUbr17755OdjdAJaQZIBntputt30vuNostsc5XMbZrN
fqqlVoRK/wO7QVeg2hcoadg2heoqIw4nzLTcjAyLT1fye9+BYrkygWoh97ry2ydVppkRhvdf
teLWQvCMkYFvFsMFoaXzyGQ2v9VGz6qhtN28Tg5vUa8LpFcvjvEcl06rM94JM9n8ZH2hQzKT
O/ist3QrqF9CYyyhNZsTZxwOWMnkdcjmeVDXIWTjpFW3kHpo7ROBxWzrrlP0VgiPVpbINESr
Q3WTY62m8+6Vajhs1IzBZCzR0pmjYj5gPhJOTYiTICxRRjGHiEr6SqAC7pa7nba2q25psPuh
pCwxN3aFQ0jxmbpTO9dajdQw31emA01SItuOspNiymQYX+D0hsQ1y9e769e9yZW/IDY4EGQ9
GPsWQndfw6Bbo2ECwr1mQAuwxEy32lrNE5kZWuvkiC92gVVKon+NIlkEFEWedsW3B3sv4EBw
36KNber0sPzSzGM5hbCd+p+xzhnqc3MF/r1frX2Azc/kHBalL/y9Ware9qyHAI4Rq60p5Aty
P71JNtWzqrV1xMOKHJeULSGrHywrCSROBpoxrKRuGZHY9qV2DKj4gIrDklkHO0b+sfZpNvz2
+8yKQHEnpDCc/KVctAeD7bbhDSwBhtWK2dY2V4IvKI9xhskYPxpRywBp+koAFaERssfquwog
JxfFaMa4QmyajKUoXUL0FS13qBGc4Qh2YH/TJGGbDq/y1uNvvUsx2/bUBXUQc4cFcnrg7cFc
nrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnr
g7cFcnrg7cFc//9K4qKYKMjM1LF5rr1agPWVsVfDmwTxgjtlwFFFHjSjJ6+CSVdEHH5jixa8
hnJ3wQrUijDijwJ6uijtSPINGORlsjQ4DZWGQoIbxbDPTx5TqTxEaZPIyP0yOCn6Mkhwhd1d
EiGzjBvR6OSJUr4hxxJhhmBORr3ISQUKKRbuQppWjwYewnNhwG1HOteiPRbuwu+jk4wQwyo7
y4OAWAxrdH4zcHYX3BOFhRIj8Nujk444UjyjTTt0ji8d8GkzUeiV5TRkkItdkgtCPBFH4Kkg
0pZ5MlnEqFeQCKgk44SIGl3QsRt9n8lEALMkE678MBMjd6EIjEHh6c8pxTgEhDmCbY8IZEof
ADo4pGRetqnALOZaFhQCnCbAZKsx4TEykv7h7EGLP7Fjaf1Dgb70X3g5enmfgDzPwh5H4w8D
cY+BOM/AHmfgDzPwh5H4w8DcY+BOM/AHmfgDzPwh/X8AHsvnhqGaevXPtjmLKui9Ik3xgFH5
9ln+CH+V5i0fVd5a3wvTB48ELsl6n3UdkRrQgkE6GrknieKOO7gjn2rutNHxZ8rUMXKPjsTW
MMuT+ZcArVGCnct/r4aEJmrB0P6sLNM5UMEk9GnsIDO7eCjcuqRSCy0Rciz1eFl4DJR0dlgO
VKJBGKjiQR+mrNMa0dZGmGErv6vQzdCC8EGFovPsQypSHm4nPVQEnhkgcuRxEnxLGmG2bJ0d
CNinEypSPRbWiIRpBIzN757cjiI+NZmgcufop55sJEmEYlCBFhiJ2rO04PQgNJOK2cNhJOMg
xOXCH+M/B24PIo44kI71EaleMOJik6cVe4EHe8Txmb36UpTIOSPNM1VIOqfMxHyKYu3rkx8o
xb1dHpYU/QSAGMJz3k4r7mE/3088WIE=
}

ThreeLevelExample2 {
; Copyright © 2021 by Christine-Ann Martin.
::LuLi8in2trRXvNOOu3Hg5/gRedQ7YJ5P3F+hd7tziZR6eP05e5wBE4Yrk4dcs9Yr06Es/4PK
JrPcin2muHuD4gLCQpoIpoIpolE1m20MWa5P8+354wKYl0kFfZXLluk+It05X6T33USxLceq
IntLJy11ZHtY7OWSAAWmek22lQ4Mn1SzLYdJL+ti9O/c5B6PS+I2F+hR/4d7aL6YFV0b+pqK
n7TbBYobUgo7Fv/dCBJ0hs0GWRdFXLKqc+7trLYOfpNtpz5zfehTdTaWB7YCCG8902t09150
kdHocW3TZ7qzT2fokV0k215waTr6aSbpVskj0u3/u9pNNFVblDEgl2m4+RQSpbrSQ367kWtF
MAxuv/dbqbB5kKocfafBnUsH2zph2mtjm91k6NbcSz/jDdCZ7spokWluHMf/R56bPsZ/COrw
Y0eMZxDPVwy2dX9+11fSK4FONrec1l45zMOjNrG0g7KhZygQLX/D/2yf2mrFXS7tPuaLti2W
kJsSX05mnbgg+7K4e8OxYkgvUCNraqfibN+43hfBnZctba23nWlfU6Pcus3OGEdI8KX2Flmn
cD6Ws/kD9mVPMYERjtX/eNDil2q6dxzz7Y73LSrCmPXfRiH0kTP8se7brQJoLn+FrTLKTqqn
0sVs+LHbggv/pTexj8FGdLmgoh+4D7kDskEGXSwCrJ6VuA5GP/pZOruaYA+lbCeWrBesLyky
515lwXhXCfNeJOxXqMJoXgpmV3LsaTHVPmSRYM6jvkeIysVApmeWlFJT++ckgTwQqtnhiXe6
JSkmwX59CEag/Hjdw3DL6plrbrZSC+XcBJTD+aE2V5uHz3V46Hz45q8VLiXfQxYue155ugRW
+VPYPXy8vHXpviwXb6Xfl03sKdVWaZ2bgt6yc+HPuKu2VAr0mMv608c/4Q7PdoK71m1ySIvx
Q67frh0cGtVVgZ0VwsKY+asT6Y5hwrNvOu2k0VUdFjC89+rJQBYAflM0cVLQu/KD4v/NEDu8
/kpXX+GjFX+WjFX+XP96y3SE5SVEp7texBhhf09WknX41x/Vmkd5bKJ7yrMJ7yrMmb5bLJ7y
3US2lqA8Xz2j++rEaW9a2kraPuefnd4+sbwVu/2vz2bPb3tFVdgqKP4Mf/RbAXcVdF1prusI
PxDHF7Fgxh43/u6DMNt5UgP4IsQoXsH8nh5y6tWHjktP92DZl2HjkfkYxJiFHI+zf+mHS3/B
gOxhJhDizP3M+2QolYzjPcYPAmm/IxY4zqLTapplQu4O2xS6nqySSX3B9AqRzmy0HrbTursu
j2x4IhtC3tj7vFHIRtRxmNg6jBgnA8QW9qNokMuYEwYJczqqDyNxCTZuwy2ADmohUK0+eRmb
JIeAcTRnYiwhlrbcv1FpaQEKCrtpJxVPjqP0m83KgTOWlR5DLfSS4dlLUPOFtfqyoHwR37oM
TIcWHrlWtltbQFykjrsBESIPOGAgVAEFgnykwNfyozf+AjRb3Ue05uDtPSXI9BII2Ag62l2Q
/Jx1GgUsahTOAWIInjw7cE+TImgzJK8cERnjIeCxgcPnKE6CMSVOHM/18DuLFyQTM4F5hEoE
VwBewLwhJWwemADeTfruCsgDtgjsgjHzOo4m+AdW55B/AWcbNgPe4OGgv/IC16KORVmg2Umc
a+1iGksXACLP2s7gzOtskfrQp8brqT6c5o5UqOTGvt4mj4BjNp8wCZcdLlvclOES01MAAn6U
c1aqsflDta3DLYHaK/inYiVismllY9s8Eq2EbfC1NEIfCRHgAvT9w0HA7MYVEAaSv1V08Ya7
Xkj7gm04Ow+3UANqVyfTB0YtJrvpWcX3kmnn878skbg0Dbg9j2z6573zq9RRbe6De+It1oHM
no+hxT04oVDc/wQIac0qBp3oIi2qObEhxmZFtvpXnPqRTFgU+/jqobxnmFW9eLPQ2oGHta03
PO884R7IyhYndYJQ2OItCVE/tXk+cxpP8nn+zhTWcS2NKZBHniGsiIDF4xUQmUMENRwE2kLu
hYAxGQPjdEa5b6IYAk90gDh9EWDR0QemoS2T+a0BDQ1NJfQHFoteymYbDoEF5MS8OrtfyJab
tuZgo5g/Lff3XlWbOAfwLqekpxgVoGcJgTysok1nunNc1qtV5CSBC2sevkYAg1LzpAgFVFsk
TDGdYxrH8VcIrQDN350CRwAr3ORGrP20a9+WeuT7YHQiaUaSwJbKrrb19raDKbNLV+Fza2a9
nqqZZKkyPsz6LS9UOk+i1eKHafRmn2PnmHZHBkmHr+k969dwWJlBtQDz3Xltl7qSRJjCf7+W
1WsgeFYIhD8mxSGAH21ssBk9bfh2suqbblJ/EY+zlG/caG374KBXJt+Dme8Em+z+sDr3Xvyk
zvIb7d0iSRvAmkUYTG7GsYYLLmVyOuRTtqhLEjpR3CrayjUU9IngYj512y7bLQxnqUNkGCpV
oZrOMdbVab5KlxQ2ak5gMh5I4czRo2cwnwErJMxKEhYpoBjDRCH6SqAC75w2P3UtdYnny+4G
mCAH3crUARPabuhO503qN2CBfX7JCQbLh06axmyIKbChdpPS7S8HWu3aWv3qWOzaHZA9nwAq
24hxCat7DWLYDVmQAetyECwZWmQ+2usthIrMzy9lklp2G8QlCapfDSJJRBhl3Gq0dwN7KORA
8tuc9m3y17zMXvBTe4mQnP1OeOcqwezU8vW/tWZDMz+TeEoVq8L3bp1q1rD+AABPSVlONFoV
+ZvGpp1YWttqWmxR5IxjaRSYtQG+hgUkVQKa8qSktR2CWtal94gRsTk1BySyDHa1f2PP3k3Z
bbaeBoDiz0BBuflKuWAnu911wBJ4gwWLF7OM5mIkTBk+oPhgdEnGJB7F7SC8GQHK8XT1DyPe
S834HMGPcITZtRFK0LqFqCp6q1ANKsvIHkZ8PnW+Yrx9Xu2tpt5iN2+fjK4i8C9nrg7cFcnr
g7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7
cFcnrg7cFcnrg7/vXB3hCmCzId9SRuqit65qKbrrGj/5YwW1wFFEGiiDJq+8UFxNMMwFFiV4
9vQu++GpEG6FGgjUdFGakuXcorqau+wHyMMgQBmq36fhiznUnjx3wuXgrvVxfxxWDpPcYXdV
hRj5RjXLd7SIrUc/wwIff9AHp0bExLIGFpMXo4YjRYMP4LmQYt6DnWPyloMXYb/RUovPYZUd
pdHALg4VuD8FuDst7AHjwIkW+a3RUYYYsW5xxxG6RBuWeDyFKPxo8xISUgvuA9GhHhC9sFiX
80schyT8VC3LC5RiscJEtyrJWr2uT+SCgFGSCdtenA6xOeCkBijQdJ+4wJQiweTh1PckM8CU
dEO1IyrV9EYxRTrIEi/UY9IThNEfmQm8dP8gwY5YuYUzreAcbn/6G03708DcY+BOM/AHmfgD
zPwh5H4w8DcY+BOM/AHmfgDzPwh5H4w8DcY+BO8/iH4g59MUURTbdapN0URxVMHh8BGs4ItN
/8X4wvKXk+rDXu2d87UAOPxCTp+5NHOyoRIQSCVjVyTRPFHXcwxz7V12kj4C+HUMbKvgszWM
MuT+ZcArVCCHdr7r4aEJ6rB0N4iLNM6cMEk5GnMI9u4eCDsuqRSES3RYk11eFE5CJRUdFhOX
KReaKDCQBu6rNMY0dZ6H7Fqu6Pf9dCC84H4puPMfy5SHm4XOVQErhkgsuRxIrxLEmGmbJ0eC
NinIy5SPSZWCIBxeI9N75adjiI+NZGhsufop55iJEm4ZkCBFgCJmrOU7PQgNJMIUfNhRWMgx
WXCH+C/BW7PIowwoAz1EakeIOKgEbdVe4ILecjx6b36cpTIWSP2P2WIWqfIxFyKov3rox8ow
b0dLpoVffiHGMJz3k4r7mE/3QmqFHC==
}

True, it is somewhat complicated, though simple in concept (3 formulas: upper, middle, and lower). Many formulas in the database are complicated, such as Strange Brew in tma.ufm, with many parameters to choose from. Here's another sample. ![60561bb5b3b06.jpg](serve/attachment&path=60561bb5b3b06.jpg) ThreeLevelExample { ; Copyright © 2021 by Christine-Ann Martin. ::XE1qWhn2trRXvNOOu3Hg5/gRedQ7YJ5P3F+hd7tziZR6eP05e5wBE4Yrk4dcs9Yr2mUs/4Pq vlT80209wdAHcRAKFFJFFJFtko20nXwyr/h3/OPPWFrmmt4L76p0l0Ho1e/yh89d10FePWVy 2ll477tjWtdHLLCArzPS7HyIceL6plVshsF/W1evfu+e6PS+I2H+hR/4N76rGYVN0r+pmGvb z7BYobUko7Fv/dCBJUhi8OWVbDXJqa8+79rrYefpPvbw7zfehXbXeRF7YGCG890+t09tl0sd 3T5suny21Wmt/+aWVX+wgHrPvZoLvn2wyOSHe/72n31V1sVOQAWafm/HBJlvtJDddoXezWY+ n6/+3tptHkTugy95Hq4kiDwBed0+id0ivm1uZjXe5fc/gQ2ebqqpN57Br3fUv+673sfBnVYM 6Pmt4uHrYF7upd/62PJF8CvuVPs6c88ZGnxuVKN4maYmoEa96f43W+zuct4cav+hVbpN0+qC hV6sO38cDE0/QF3hPIGjM85SobVX7jcrxH/O8L4sgrdTz++8myjS/h359OwgoDhX58uo0ysr QXjDnco3s6OlREN2e97tMIWaru3FPPvjtfvItaY+c9FJWpJPd3z6tvuBlhOf6XtOvqOrpdSz W16vcsDC++nelVPwXYMsYCiU9xH2JHYJJMukgFWT0rcByVBhTzcRbjaA+lrieWrBesLymx51 5lwXgXCfJeJOxnrMZoXgpuV3KsaTHVPmSRYM6jvkeIysVBpmeWlFJT++ckgzwQqtnhiXe6JS kCZIjDfBCtw/jxO4bhF90619tMJB/LugkpBfNC7ic3j57Cc9jZ8UV+iFxrPoYMXv68cnxIr8 iHsnLZ+3jr8XR4rL9rvQ67WlvqIvu4NwWbdJ/jHXEX7qgVaTmXdaeudco9nuvp41m1yRIvxQ 6bfrh0cGdVVgZ0FwsOY+SsTmYZV41mXHXbyGqaugRB+e/lEoAMgvQG6uoFI3ehB83+GiBX+f y0rLfjxiLfrxiL/rned5bJicpOi0/6g0o44P6fNKII+y4/CTyu8Nlkd5Fmkd5FGzt8tlkd5b KJ7SdA+rZ7Rf/VCdreNbyVvH3gvzOcf2N4K3f73Z7tns72qmBQVlnbmv/oNgLupth6N0WXVm FgTSDiw4Y87fX79MDtlUgP4IsQoXaA8nl562tOHjktP/67LqdPGJ/IxiTELOQ8n/8V3lv/DA diDTCHEnfuZ81xQLxmHv7+9AYe5DErhvotOrnmXD5iHYHrpfqpILf9A0DoGdbqzfotP7m62B 6AjjE2K8wOu/WcgE9GF72AqPGAeEwDZ1b2gyK4iRAjlwdrauXuJWYKzFWxGYwENkShe4gIzt EErA3UNImIcY56G/r9R6GEhiw676y8Nzo277z+bVwJHbKo8hlPJJ8uKFqHni+P1Y1D4o7DUm NEuYg1Tb2y2pUhC54KbAhEyjjBAYNARDEoNJcznM68nvnxo9bqP6dz99PQXI9BII2AgG2l3R /Jx1Gg0s6gTOAOIIniI4UEhTImoTJK+UEJniIdCxg8PlKE6MMSVuEM/t8DuLFiqJG8i8QCUm O4Ar8CcYiDcgNwg3M0prIH4YH4EH40xsDKutPQn1eewPgF3WD4jV3xA89HRo2Q1TUtJoPnJn mftqDJ7FgwyjN7rc25118bFKnfbVDSnLHNnS9Zy4tF3cEPYsLnHWIjr7p8lrUVIxQnCAO1p4 q10Z/qVt63DLYVNlfxTMxqROzyasZW+Eq1Gb/EaQFI/EiqgAvTra6DgDWsaCAN5gzV08Qe/X kjrST68Vs/NNQnel830AdOby6b6F3td5llZ/OPL5GI9wGY/oHYH473zp9RRbe6De+Ij14AYO RHUjnoxRnG4DqhQ04oTDyBriIar7sTEGbnV0DdHM5j6MUBIl//oO6W8pZhV/gjHoYUjjONOc Yc45xjuRkqYndYJQxOItCVE/tXk+cxTf4Pf6PVns4JZ3osFccaawaisUgHTBZSxQMEBTYbu4 OiFEbBDs2RoVotjIFI7RlDh9I2ARMQB2oS2jhG0RKo2usPYiCMWPZTsrBUiicCJBn0OM7Jaf rpZkopy/Vuf4rSrNHgP4VNPwMYwaUKXC4ksLKZHy3zUXtafTpgUggNr3LJGAYHk5UAwqmKW2 TKjOs4NA+KOkVojW690CRwA7gbiM2hUbr17755OdjdAJaQZIBntputt30vuNostsc5XMbZrN fqqlVoRK/wO7QVeg2hcoadg2heoqIw4nzLTcjAyLT1fye9+BYrkygWoh97ry2ydVppkRhvdf teLWQvCMkYFvFsMFoaXzyGQ2v9VGz6qhtN28Tg5vUa8LpFcvjvEcl06rM94JM9n8ZH2hQzKT O/ist3QrqF9CYyyhNZsTZxwOWMnkdcjmeVDXIWTjpFW3kHpo7ROBxWzrrlP0VgiPVpbINESr Q3WTY62m8+6Vajhs1IzBZCzR0pmjYj5gPhJOTYiTICxRRjGHiEr6SqAC7pa7nba2q25psPuh pCwxN3aFQ0jxmbpTO9dajdQw31emA01SItuOspNiymQYX+D0hsQ1y9e769e9yZW/IDY4EGQ9 GPsWQndfw6Bbo2ECwr1mQAuwxEy32lrNE5kZWuvkiC92gVVKon+NIlkEFEWedsW3B3sv4EBw 36KNber0sPzSzGM5hbCd+p+xzhnqc3MF/r1frX2Azc/kHBalL/y9Ware9qyHAI4Rq60p5Aty P71JNtWzqrV1xMOKHJeULSGrHywrCSROBpoxrKRuGZHY9qV2DKj4gIrDklkHO0b+sfZpNvz2 +8yKQHEnpDCc/KVctAeD7bbhDSwBhtWK2dY2V4IvKI9xhskYPxpRywBp+koAFaERssfquwog JxfFaMa4QmyajKUoXUL0FS13qBGc4Qh2YH/TJGGbDq/y1uNvvUsx2/bUBXUQc4cFcnrg7cFc nrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnr g7cFcnrg7cFc//9K4qKYKMjM1LF5rr1agPWVsVfDmwTxgjtlwFFFHjSjJ6+CSVdEHH5jixa8 hnJ3wQrUijDijwJ6uijtSPINGORlsjQ4DZWGQoIbxbDPTx5TqTxEaZPIyP0yOCn6Mkhwhd1d EiGzjBvR6OSJUr4hxxJhhmBORr3ISQUKKRbuQppWjwYewnNhwG1HOteiPRbuwu+jk4wQwyo7 y4OAWAxrdH4zcHYX3BOFhRIj8Nujk444UjyjTTt0ji8d8GkzUeiV5TRkkItdkgtCPBFH4Kkg 0pZ5MlnEqFeQCKgk44SIGl3QsRt9n8lEALMkE678MBMjd6EIjEHh6c8pxTgEhDmCbY8IZEof ADo4pGRetqnALOZaFhQCnCbAZKsx4TEykv7h7EGLP7Fjaf1Dgb70X3g5enmfgDzPwh5H4w8D cY+BOM/AHmfgDzPwh5H4w8DcY+BOM/AHmfgDzPwh/X8AHsvnhqGaevXPtjmLKui9Ik3xgFH5 9ln+CH+V5i0fVd5a3wvTB48ELsl6n3UdkRrQgkE6GrknieKOO7gjn2rutNHxZ8rUMXKPjsTW MMuT+ZcArVGCnct/r4aEJmrB0P6sLNM5UMEk9GnsIDO7eCjcuqRSCy0Rciz1eFl4DJR0dlgO VKJBGKjiQR+mrNMa0dZGmGErv6vQzdCC8EGFovPsQypSHm4nPVQEnhkgcuRxEnxLGmG2bJ0d CNinEypSPRbWiIRpBIzN757cjiI+NZmgcufop55sJEmEYlCBFhiJ2rO04PQgNJOK2cNhJOMg xOXCH+M/B24PIo44kI71EaleMOJik6cVe4EHe8Txmb36UpTIOSPNM1VIOqfMxHyKYu3rkx8o xb1dHpYU/QSAGMJz3k4r7mE/3088WIE= } ThreeLevelExample2 { ; Copyright © 2021 by Christine-Ann Martin. ::LuLi8in2trRXvNOOu3Hg5/gRedQ7YJ5P3F+hd7tziZR6eP05e5wBE4Yrk4dcs9Yr06Es/4PK JrPcin2muHuD4gLCQpoIpoIpolE1m20MWa5P8+354wKYl0kFfZXLluk+It05X6T33USxLceq IntLJy11ZHtY7OWSAAWmek22lQ4Mn1SzLYdJL+ti9O/c5B6PS+I2F+hR/4d7aL6YFV0b+pqK n7TbBYobUgo7Fv/dCBJ0hs0GWRdFXLKqc+7trLYOfpNtpz5zfehTdTaWB7YCCG8902t09150 kdHocW3TZ7qzT2fokV0k215waTr6aSbpVskj0u3/u9pNNFVblDEgl2m4+RQSpbrSQ367kWtF MAxuv/dbqbB5kKocfafBnUsH2zph2mtjm91k6NbcSz/jDdCZ7spokWluHMf/R56bPsZ/COrw Y0eMZxDPVwy2dX9+11fSK4FONrec1l45zMOjNrG0g7KhZygQLX/D/2yf2mrFXS7tPuaLti2W kJsSX05mnbgg+7K4e8OxYkgvUCNraqfibN+43hfBnZctba23nWlfU6Pcus3OGEdI8KX2Flmn cD6Ws/kD9mVPMYERjtX/eNDil2q6dxzz7Y73LSrCmPXfRiH0kTP8se7brQJoLn+FrTLKTqqn 0sVs+LHbggv/pTexj8FGdLmgoh+4D7kDskEGXSwCrJ6VuA5GP/pZOruaYA+lbCeWrBesLyky 515lwXhXCfNeJOxXqMJoXgpmV3LsaTHVPmSRYM6jvkeIysVApmeWlFJT++ckgTwQqtnhiXe6 JSkmwX59CEag/Hjdw3DL6plrbrZSC+XcBJTD+aE2V5uHz3V46Hz45q8VLiXfQxYue155ugRW +VPYPXy8vHXpviwXb6Xfl03sKdVWaZ2bgt6yc+HPuKu2VAr0mMv608c/4Q7PdoK71m1ySIvx Q67frh0cGtVVgZ0VwsKY+asT6Y5hwrNvOu2k0VUdFjC89+rJQBYAflM0cVLQu/KD4v/NEDu8 /kpXX+GjFX+WjFX+XP96y3SE5SVEp7texBhhf09WknX41x/Vmkd5bKJ7yrMJ7yrMmb5bLJ7y 3US2lqA8Xz2j++rEaW9a2kraPuefnd4+sbwVu/2vz2bPb3tFVdgqKP4Mf/RbAXcVdF1prusI PxDHF7Fgxh43/u6DMNt5UgP4IsQoXsH8nh5y6tWHjktP92DZl2HjkfkYxJiFHI+zf+mHS3/B gOxhJhDizP3M+2QolYzjPcYPAmm/IxY4zqLTapplQu4O2xS6nqySSX3B9AqRzmy0HrbTursu j2x4IhtC3tj7vFHIRtRxmNg6jBgnA8QW9qNokMuYEwYJczqqDyNxCTZuwy2ADmohUK0+eRmb JIeAcTRnYiwhlrbcv1FpaQEKCrtpJxVPjqP0m83KgTOWlR5DLfSS4dlLUPOFtfqyoHwR37oM TIcWHrlWtltbQFykjrsBESIPOGAgVAEFgnykwNfyozf+AjRb3Ue05uDtPSXI9BII2Ag62l2Q /Jx1GgUsahTOAWIInjw7cE+TImgzJK8cERnjIeCxgcPnKE6CMSVOHM/18DuLFyQTM4F5hEoE VwBewLwhJWwemADeTfruCsgDtgjsgjHzOo4m+AdW55B/AWcbNgPe4OGgv/IC16KORVmg2Umc a+1iGksXACLP2s7gzOtskfrQp8brqT6c5o5UqOTGvt4mj4BjNp8wCZcdLlvclOES01MAAn6U c1aqsflDta3DLYHaK/inYiVismllY9s8Eq2EbfC1NEIfCRHgAvT9w0HA7MYVEAaSv1V08Ya7 Xkj7gm04Ow+3UANqVyfTB0YtJrvpWcX3kmnn878skbg0Dbg9j2z6573zq9RRbe6De+It1oHM no+hxT04oVDc/wQIac0qBp3oIi2qObEhxmZFtvpXnPqRTFgU+/jqobxnmFW9eLPQ2oGHta03 PO884R7IyhYndYJQ2OItCVE/tXk+cxpP8nn+zhTWcS2NKZBHniGsiIDF4xUQmUMENRwE2kLu hYAxGQPjdEa5b6IYAk90gDh9EWDR0QemoS2T+a0BDQ1NJfQHFoteymYbDoEF5MS8OrtfyJab tuZgo5g/Lff3XlWbOAfwLqekpxgVoGcJgTysok1nunNc1qtV5CSBC2sevkYAg1LzpAgFVFsk TDGdYxrH8VcIrQDN350CRwAr3ORGrP20a9+WeuT7YHQiaUaSwJbKrrb19raDKbNLV+Fza2a9 nqqZZKkyPsz6LS9UOk+i1eKHafRmn2PnmHZHBkmHr+k969dwWJlBtQDz3Xltl7qSRJjCf7+W 1WsgeFYIhD8mxSGAH21ssBk9bfh2suqbblJ/EY+zlG/caG374KBXJt+Dme8Em+z+sDr3Xvyk zvIb7d0iSRvAmkUYTG7GsYYLLmVyOuRTtqhLEjpR3CrayjUU9IngYj512y7bLQxnqUNkGCpV oZrOMdbVab5KlxQ2ak5gMh5I4czRo2cwnwErJMxKEhYpoBjDRCH6SqAC75w2P3UtdYnny+4G mCAH3crUARPabuhO503qN2CBfX7JCQbLh06axmyIKbChdpPS7S8HWu3aWv3qWOzaHZA9nwAq 24hxCat7DWLYDVmQAetyECwZWmQ+2usthIrMzy9lklp2G8QlCapfDSJJRBhl3Gq0dwN7KORA 8tuc9m3y17zMXvBTe4mQnP1OeOcqwezU8vW/tWZDMz+TeEoVq8L3bp1q1rD+AABPSVlONFoV +ZvGpp1YWttqWmxR5IxjaRSYtQG+hgUkVQKa8qSktR2CWtal94gRsTk1BySyDHa1f2PP3k3Z bbaeBoDiz0BBuflKuWAnu911wBJ4gwWLF7OM5mIkTBk+oPhgdEnGJB7F7SC8GQHK8XT1DyPe S834HMGPcITZtRFK0LqFqCp6q1ANKsvIHkZ8PnW+Yrx9Xu2tpt5iN2+fjK4i8C9nrg7cFcnr g7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7cFcnrg7 cFcnrg7cFcnrg7/vXB3hCmCzId9SRuqit65qKbrrGj/5YwW1wFFEGiiDJq+8UFxNMMwFFiV4 9vQu++GpEG6FGgjUdFGakuXcorqau+wHyMMgQBmq36fhiznUnjx3wuXgrvVxfxxWDpPcYXdV hRj5RjXLd7SIrUc/wwIff9AHp0bExLIGFpMXo4YjRYMP4LmQYt6DnWPyloMXYb/RUovPYZUd pdHALg4VuD8FuDst7AHjwIkW+a3RUYYYsW5xxxG6RBuWeDyFKPxo8xISUgvuA9GhHhC9sFiX 80schyT8VC3LC5RiscJEtyrJWr2uT+SCgFGSCdtenA6xOeCkBijQdJ+4wJQiweTh1PckM8CU dEO1IyrV9EYxRTrIEi/UY9IThNEfmQm8dP8gwY5YuYUzreAcbn/6G03708DcY+BOM/AHmfgD zPwh5H4w8DcY+BOM/AHmfgDzPwh5H4w8DcY+BO8/iH4g59MUURTbdapN0URxVMHh8BGs4ItN /8X4wvKXk+rDXu2d87UAOPxCTp+5NHOyoRIQSCVjVyTRPFHXcwxz7V12kj4C+HUMbKvgszWM MuT+ZcArVCCHdr7r4aEJ6rB0N4iLNM6cMEk5GnMI9u4eCDsuqRSES3RYk11eFE5CJRUdFhOX KReaKDCQBu6rNMY0dZ6H7Fqu6Pf9dCC84H4puPMfy5SHm4XOVQErhkgsuRxIrxLEmGmbJ0eC NinIy5SPSZWCIBxeI9N75adjiI+NZGhsufop55iJEm4ZkCBFgCJmrOU7PQgNJMIUfNhRWMgx WXCH+C/BW7PIowwoAz1EakeIOKgEbdVe4ILecjx6b36cpTIWSP2P2WIWqfIxFyKov3rox8ow b0dLpoVffiHGMJz3k4r7mE/3QmqFHC== }
 
0
reply
217
views
4
replies
2
followers
live preview
Enter at least 10 characters.
WARNING: You mentioned %MENTIONS%, but they cannot see this message and will not be notified
Saving...
Saved
All posts under this topic will be deleted ?
Pending draft ... Click to resume editing
Discard draft